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Introduction - One of the physics goals for ITER is to achieve high fusion power PDT at a
high gain QDT. This goal is important for studying the physics of reactor-relevant burning plasmas.
Simulations of plasma performance in ITER can help achieve this goal by aiding in the design of
systems such as diagnostics and in planning ITER plasma regimes. Simulations can indicate areas where
further research in theory and experiments is needed. To have credible simulations integrated mod-
eling is necessary since plasma profiles and applied heating, torque, and current drive are strongly coupled.

The PTRANSP code [1–3] is being used to generate time-dependent integrated predictions. Time
dependent predictions are necessary to include evolving processes such as plasma formation, termination,
and transients such as magnetic field diffusion, sawtooth effects, and accumulation of ash from the DT
reactions. The PTRANSP predictions are self-consistent in that the heating, current-drive, torques
and equilibria are calculated using predicted plasma profiles, and vice versa. These are included in the
local flux-averaged energy, momentum, and magnetic field evolutions. Many effects are included such as
sawtooth mixing and accumulation of ash.

Predictions for ITER have been performed using physics-based models such as GLF23 [4]. This
model achieve approximate agreement predicting measured temperatures and toroidal rotation vφ.
Examples of predictions are in Ref. [5]. An improved Trapped gyro-Landau Fluid model TGLF [6]
contains physics not included in GLF23 such as realistic shaped finite aspect ratio (Miller) flux geometry,
collisionality, and a larger set of basis functions for fitting the ITG, TEM, ETG, and electromagnetic
kinetic ballooning mode turbulence simulated with a large database of non-linear runs using the GYRO
code [7]. TGLF achieves more accurate predictions of temperatures measured in DIII-D and JET
L-mode, H-mode and hybrid discharges than does GLF23.

This paper describes a major upgrade to PTRANSP which implements TGLF. The upgrade uses
a new robust solver for stiff transport models. Both GLF23 and TGLF are incorporated. The
implementation of TGLF is verified by comparing with results derived using the XPTOR code, and is
tested using H-mode plasmas from JET. Predictions for ITER plasmas are given and compared with
predictions using GLF23.

PT SOLVER - The new solver is modular, parallel, and multi-regional. The solver does not
depend on PTRANSP internals and is being made available through the NTCC website [8]. The solver
is used to integrate the highly nonlinear time-dependent equations for ion, and electron temperatures
and densities, and angular momentum with implicit Newton iteration methods. The user controls the
choice of transport models attached to the solver, with a range of neoclassical and/or turbulent, or
semi-empirical or data driven choices available. These include turbulent transport models such as GLF23
and TGLF. For the more CPU-intensive transport models such as TGLF, a multi-level, communicator
splitting method is used to parallelize the computation of transport coefficients using MPI. This allows
the code to run on a flexible number of CPUs. Two-level parallelization is implemented in PT SOLVER:
parallelization of flux-surfaces; and in the ky spectrum domain.

The data are communicated between PTRANSP and PT SOLVER via ”Plasma State” files [9]
containing axisymmetric MHD equilibrium, plasma and source profiles (1D and 2D), and associated
scalar data. The interface provides easy data access (allowing, for instance, rezone, and an interpolation
function). Data in the plasma state is component based fortran 90 type.

Tests - Predictions of temperature profiles from the standalone module are compared with those
predicted by XPTOR (the standard tool for TGLF predictions) and from experiments. A crucial step
in the verification that TGLF is implemented correctly is comparison of the heat flux profiles predicted
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FIG. 1: Compare initial ion and electron heat fluxes computed by XPTOR and PT SOLVER
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FIG. 2: Compare predicted ion and electron temperatures computed by XPTOR and PT SOLVER

using input profiles. Comparisons for a discharge are shown in Figure 1. Comparisons of the predicted
temperatures are shown in Figure 2. Different formulations for the differencing schemes (first order in
XPTOR and second order in PT SOLVER) lead to small differences in the predictions. Comparisons of
results predicting Te and Ti profiles measured in ITER baseline demonstration plasmas from the ITPA
profile database [10] are given.

Predictions - ITER H-mode plasmas are predicted using the GLF23 and TGLF modules are compared.
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