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In the standard ideal MHD energy principle for equilibria with no flows, the sta-

bility criterion, which is the definiteness of the perturbed potential energy, is usu-

ally constructed from the linearized equation of motion. Equivalently while more

straightforwardly, it can also be obtained from the second variation of the Hamilto-

nian calculated with proper constraints. For equilibria with flows, a stability criterion

was proposed from the linearized equation of motion, but not explained as an energy

principle1. In this paper, the second variation of the Hamiltonian is found to provide

a stability criterion equivalent to, while more straightforward than, what was con-

structed from the linearized equation of motion. To calculate the variations of the

Hamiltonian, a complete set of constraints on the dynamics of the perturbations is

derived from the Euler-Poincare structure of the ideal MHD. In addition, a previous

calculation of the second variation of the Hamiltonian was claimed to give a different

stability criterion2, and in this paper we argue such a claim is incorrect.
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I. INTRODUCTION

The stability of ideal MHD equilibria is of great concern in fusion, astro and space plasma

physics. For equilibria with no flows, a well developed tool to study the stability is the energy

principle3. Traditionally, the stability criterion is constructed from the linearized equation of

motion ρξ̈ = F0(ξ), where ρ is the mass density, ξ is the displacement and F0(ξ) is the force

operator for ideal MHD equilibria with no flows3. It is found that ξ has no positive growth

rate when −
∫
ξ · F0(ξ) d3x, which turns out to be the perturbed potential energy δ2W0,

is positive definite. With such an approach one needs to prove the self-adjointness of the

force operator F0(ξ), that
∫
η ·F0(ξ) d3x =

∫
ξ ·F0(η) d3x, which requires tedious algebra.

From an equivalent but more straightforward perspective, the perturbed energy is in fact

the second variation of the total Hamiltonian calculated with proper variational constraints,

δ2H =
∫
ρξ̇2 d3x + δ2W0. As the total energy is conserved in ideal MHD, the perturbed

energy is intrinsically conserved. As a result, the positive definiteness of δ2W0 can be proven

to be a necessary and sufficient condition for the equilibrium to be stable4. Moreover, the

self-adjointness of the force operator can be proven as a result of the conservation of the

perturbed energy5.

The stability of ideal MHD equilibria with non-zero flows is also important, especially for

fusion plasmas where macroscopic flows are ubiquitous6. A stability criterion was previously

constructed by Frieman and Rotenberg1 from the linearized equation of motion with flows

ρξ̈ + 2ρv · ∇ξ̇ = F(ξ), (1)

where v is the non-zero equilibrium flow velocity, and here the force operator

F(ξ) = ∇ · (ρξv · ∇v − ρvv · ∇ξ) + F0(ξ) (2)

has two more flow-dependent terms than F0(ξ). They found that when −
∫
ξ · F(ξ) d3x is

positive definite, ξ has no positive growth rate, and therefore the system is stable. Although

this criterion turns out valid, as will be rederived from the Hamiltonian perspective in this

paper, it has several defects. First, the criterion was not explained in an energy perspective,

and hence was not called as an energy principle. Secondly, one needs to prove the self-

adjointness of the flow-dependent force operator F(ξ), which now requires even more algebra

because of the non-zero flows, while in principle it should be a natural outcome of the

conservation of the perturbed energy.
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In this paper, from the Hamiltonian perspective, we present an energy principle that is

equivalent to Frieman and Rotenberg’s stability criterion. We derive a complete set of varia-

tional constraints on the perturbations that are allowed by their dynamics, which are derived

from the Euler-Poincare structure7,8 of the ideal MHD. With these variational constraints,

the intrinsically conserved second variation of the Hamiltonian δ2H =
∫
ρξ̇2 d3x + δ2W

leads to an energy principle that the system is stable when the effective potential energy

δ2W = −
∫
ξ · F(ξ) d3x is positive definite. Such a stability criterion is found equivalent to

the one constructed from the linearized equation of motion, but derived more straightfor-

wardly.

It has come to our attention that a previous calculation of the second variation of the

Hamiltonian was claimed to give a different stability criterion2. To summarize the result, the

so-called “dynamically accessible” variations, as introduced by Isichenko9 and Morrison10,

were used as constraints by Hameiri2 to obtain the second variation of the Hamiltonian,

δ2H =
∫

[ρ(δv − v · ∇ξ + ξ · ∇v)2 − ξ · F(ξ)] d3x, the definiteness of which was claimed to

determine the stability of the equilibrium. Note that here δv is of the dynamically accessible

form expressed with variables {ξ, β, α, ζ},

δv = ξ × (∇× v) + (∇× ζ)×B/ρ+ α∇s−∇β, (3)

where s and B are the specific entropy and the magnetic flux density respectively. The arbi-

trariness of the variables {ξ, β, α, ζ} allows for manipulations for stability analysis, therefore

the resulted stability criterion was claimed to be different from, and better than what Frie-

man and Rotenberg proposed, which is surprising since intuitively the stability criterion

derived from the two perspectives are expected to be equivalent. We believe such a crite-

rion is incorrect for the following reasons. First, the variational constraints they used were

not rigorously derived. Therefore, their interpretation that the variational constraints are

equivalent to the Casimirs2,10 may not stand. In this paper, the “dynamically accessible”

variations are recovered in our constraints, and for the first time, rigorously derived. In the

derivation the dynamically accessible form of δv is found to be a result of the Euler-Poincare

structure of ideal MHD, rather than a conservation law. Secondly, the dynamics of the per-

turbations were not considered, while in this paper it is shown that the variables {ξ, β, α, ζ}

in the dynamically accessible form of δv are in fact constrained by some dynamical equa-

tions, and hence not arbitrary variables as claimed in Ref. 2. Thirdly, the reason why the
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definiteness of δ2H determines the stability of the equilibrium was argued to be a mixture10

of the energy-Casimir method11,12 and the Dirichlet’s theorem12, which has not really been

proven valid for noncanonical infinite-dimensional systems like ideal MHD10. We believe it

should be the conservation of δ2H, which is a dynamical effect, that leads to the correct

stability criterion.

The rest of the paper is arranged as follows. By studying the Lagrangian formulation of

the ideal MHD in Sec. II, and its Euler-Poincare structure in Sec. III, we obtain a complete

set of variational constraints that describes the dynamics of the ideal MHD perturbations

in Sec. IV. In Sec. V, the constraints are then used to calculate the second variation of

the Hamiltonian and develop a stability criterion, which is further shown to be equivalent

to the one obtained by Frieman and Rotenberg. The arguments against Hameiri’s criterion

and a brief conclusion are presented in Sec. VI.

II. THE LAGRANGIAN FORMULATION OF THE IDEAL MHD

To establish the Lagrangian formulation of the ideal MHD, we start with the action

principle δ
∫
L[v, ρ, s,B] dt = 0, where L is the Lagrangian

L =

∫ [
1

2
ρv2 − ρε(s, ρ)− 1

2
B2

]
d3x, (4)

and the specific internal energy ε is defined by the first law of thermodynamics dε = Tds−

pd(1/ρ), where the pressure p and the temperature T are also functions of ρ and s. After

directly trying with {δv, δρ, δs, δB} assumed to be arbitrary perturbations, one finds that

calculating δ
∫
L[v, ρ, s,B] dt = 0 fails to give the expected equation of motion. This suggests

that appropriate variational constraints on {δv, δρ, δs, δB} must be used.

Variational constraints are often connected with conservation laws, and in ideal MHD

we have the continuity law, the adiabatic law, and the frozen-in law, which correspond to

the local conservation of mass, entropy, and magnetic flux respectively. The idea of local

conservation is that certain quantities associated with an arbitrary fluid element are carried

along by the flow. Take the conservation of mass M =
∫
V
ρd3x as an example, where V (t)

is an arbitrary volume that flows with the fluid. Perturbed by a small displacement ξ, the

mass within the volume remains constant,

δM =

∫
V

δρd3x+

∮
∂V

ρξ · dS =

∫
V

[δρ+∇ · (ρξ)]d3x = 0. (5)
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Now that V is arbitrary, one has

δρ = −∇ · (ρξ). (6)

Such a proof is inspired by Arnold13. Similarly, from the conservation of entropy and mag-

netic flux, we have

δs = −ξ · ∇s, (7)

δB = ∇× (ξ ×B). (8)

One would recognize that Eqs. (6) - (8) look exactly the same as the constraints used in the

standard energy principle with no flows3, which were obtained by linearizing and integrating

the ideal MHD equations when v = 0. However, they are now proven valid even when there

is non-zero flow. These variational constraints can make sure that the local conservation of

mass, entropy, and magnetic flux is not violated.

As for the velocity v, there is not a similar local conservation law associated, but δv is

related to the displacement ξ in a different way. Express ξ with the Lagrangian labeling X,

ξ(x, t) = δx(X, t), and then take the time derivative, we have ξ̇ + v · ∇ξ = δẋ. Similarly,

v(x, t) = ẋ(X, t), and by taking the variation we get δv + ξ · ∇v = δẋ. Combining the two

equations leads to a constraint on δv,

δv = ξ̇ + v · ∇ξ − ξ · ∇v. (9)

With these variational constraints, the action principle δ
∫
L dt = 0 now gives the mo-

mentum equation,

∂t(ρv) = −∇ · (ρvv) + (∇×B)×B−∇p. (10)

Meanwhile, the other ideal MHD equations directly come from the local conservation of

mass, entropy, and magnetic flux respectively,

∂tρ = −∇ · (ρv), (11)

∂ts = −v · ∇s, (12)

∂tB = ∇× (v ×B). (13)

Such a formulation was first presented by Newcomb14. The Hamiltonian is defined by

H[v, ρ, s,B] =

∫
δL

δv
· v d3x− L =

∫ [
1

2
ρv2 + ρε(s, ρ) +

1

2
B2

]
d3x. (14)
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Using the ideal MHD equations, one can easily prove that H is conserved. When the system

is at equilibrium, one would expect the first variation of the Hamiltonian δH to vanish,

just like what happens with equilibrium with no flows5. However, with the variational

constraints (6) - (9) and the equilibrium conditions, δH does not vanish. One also notices

that the constraints (6) - (9) does not form a closed dynamical system. That is, ξ cannot

be solved self-consistently from the four equations. This suggests that there should be more

constraints on the dynamics of the perturbations.

III. THE EULER-POINCARE REDUCTION

The formulation in the last section is in fact the ideal MHD case of the Euler-Poincare

reduction7. In this section, the language of the Euler-Poincare reduction for general continua

is introduced to uncover the geometric structure of the ideal MHD, which is buried under

the massive vector algebra. More detailed discussion on the Euler-Poincare reduction can

be found in Refs. 7 and 8.

Describe a continuum with the Lagrangian labeling X, and let the Lagrangian be

L[x(X, t), ẋ(X, t), a0(X)], where a0(X) is the advected quantity that is frozen into the

fluid element when the continuum flows. The fluid motion is captured by a path ηt in the

configuration space Diff(D), which maps the Lagrangian labeling into the Eulerian labeling:

ηt(X) = x(X, t). The action principle δ
∫
L dt = 0 then gives the Euler-Lagrange equation

for ηt on Diff(D) in the Lagrangian labeling.

However, one would prefer to use the more familiar Eulerian labeling: the Lagrangian

l[v(x, t), a(x, t)] = L[x, ẋ, a0] ◦ η−1
t lives on the semidirect product space X(D)× V ∗, where

v(x, t) = ẋ ◦ η−1
t ∈ X(D), the Lie algebra, and a(x, t) = a0 ◦ η−1

t ∈ V ∗, the representation

space. To deal with the action principle in Eulerian labeling δ
∫
l[v, a] dt = 0, one needs the

constraints on δv and δa,

δv = ξ̇ + v · ∇ξ − ξ · ∇v, (15)

δa = −Lξa, (16)

where ξ(x, t) = δx ◦ η−1
t ∈ X(D), and the Lie derivative Lξa = a ◦ δηt ◦ η−1

t . The exact form

of Lξa is determined case by case depending on the nature of the tensor a. Eq. (15) is Eq.

(9) and has been derived in Sec. II, while Eq. (23) is obtained by taking the variation of
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a ◦ ηt = a0. With these constraints the action principle leads to the Euler-Poincare equation

for continua

∂t
δl

δv
= −Lv

δl

δv
+
δl

δa
� a, (17)

where the � operation is defined by 〈w�a,u〉 = −〈Lua, w〉, for all w ∈ V , a ∈ V ∗, u ∈ X(D),

and 〈 , 〉 =
∫

d3x. The rest of the dynamical equations is simply the advection equation,

∂ta = −Lva. (18)

In addition, the Hamiltonian is defined by h[v, a] = 〈δl/δv,v〉 − l, which can be proven

to be conserved using Eqs. (17) and (18). It is worthwhile to clarify that here h is defined

in X(D)× V ∗ with variables {v, a}, while usually the Hamiltonian formulation is developed

in X∗(D)× V ∗ with the Legendre transformation. We choose to stay in X(D)× V ∗ because

the role the Hamiltonian plays in our energy principle is no more than a conserved quantity,

so there is no need to confuse the readers by defining more variables and switching spaces.

In the ideal MHD, δl/δv = ρv, while a ∈ {ρ d3x, s,B ·dS}, and Lv(ρ d3x) = ∇· (ρv) d3x,

Lvs = v · ∇s, and Lv(B · dS) = −∇× (v ×B) · dS. Then Eq. (16) and Eq. (18) become

Eqs. (6) - (8) and Eqs. (11) - (13) respectively, while Eq. (15) is Eq. (9), and Eq. (17)

becomes

∂t(ρv) = −∇ · (vρv)−∇v · ρv + ρ∇(v2/2− ε− p/ρ) + ρT∇s+ (∇×B)×B, (19)

which can be simplified to Eq. (10) after some algebra.

In the next section, the language of the Euler-Poincare reduction will be further used to

derive the complete set of constraints on the linear perturbations.

IV. THE VARIATIONAL CONSTRAINTS

It is noticed that the constraints (24) - (23) does not form a closed dynamical system

from which the evolution of ξ can be solved self-consistently. This suggests there should be

more constraints, which we will derive by studying the dynamics of the perturbations in this

section. First consider the perturbations {δv, δa} ∈ X(D)× V ∗. In principle, the dynamics

of any linear perturbation {δv, δa} must follow the linearized equations of motion for the

continuum:

∂t

(
δ
δl

δv

)
= −Lδv

δl

δv
− Lv

(
δ
δl

δv

)
+

(
δ
δl

δa

)
� a+

δl

δa
� δa, (20)

∂tδa = −Lδva− Lvδa. (21)
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Note that δl/δv and δl/δa can be expressed with {v, a}, therefore δ(δl/δv) and δ(δl/δa)

can be expressed with {δv, δa}. The equations above form a closed dynamical system with

variables {δv, δa}.

With the equations above constraining their dynamics, {δv, δa} must not be arbitrary,

but in certain forms. We have found that {δv, δa} must be in the following algebraic form

δ
δl

δv
= −Lξ

δl

δv
+ a∗ � a, (22)

δa = −Lξa, (23)

expressed with variables {ξ, a∗} ∈ X(D) × V (again, note that δ(δl/δv) and δ(δl/δa) can

be expressed with {δv, δa}). And in order for {δv, δa} to satisfy Eqs. (20) and (21), the

evolution of {ξ, a∗} must follow the differential equations

∂tξ = δv + ξ · ∇v − v · ∇ξ, (24)

∂ta
∗ = δ

δl

δa
+ Lξ

δl

δa
− Lva

∗, (25)

where δv and δ(δl/δa) can be expressed with {ξ, a∗}, using Eqs. (22) and (23). The four

equations (22) - (25) form a closed dynamical system that describes the dynamics of the

perturbations with the variables {ξ, a∗}: Eqs. (22) and (23) change the variables from

{δv, δa} to {ξ, a∗}, while Eqs. (24) and (25) describe the dynamics of the new variables

{ξ, a∗}. By combining the four equations one gets Eqs. (20) and (21), which suggests that

the two dynamical systems are indeed equivalent.

The four equations (22) - (25) are the complete set of constraints on the perturbations

{δv, δa} that will be further used to calculate the variations of the Hamiltonian, but before

doing that we must prove the validity of them. Eqs. (23) and (24) are just constraints (16)

and (15), which have been proved in Sec. III. Next, we shall prove Eqs. (22) and (25).

First, define a vector field u0(X) ∈ Tηt(X)D that is carried by the continuum flow ηt, and

then express it with the Eulerian labeling u(x, t) = u0 ◦ η−1
t ∈ X(D). Then, pair it with the

Euler-Lagrange equation Eq. (17), we have〈
(∂t + Lv)

δl

δv
,u

〉
=

〈
δl

δa
� a,u

〉
= −

〈
δl

δa
,Lua

〉
. (26)

The last equal sign comes from the definition of the � operator. Then, map Eq. (26) to the

Lagrangian labeling with ηt,〈[
(∂t + Lv)

δl

δv

]
◦ ηt,u0

〉
= −

〈
δL

δa0
, (Lua) ◦ ηt

〉
. (27)
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For the LHS, we use the property of the material derivative (derivation along a Co-Adjoint

orbit)8 [
(∂t + Lv)

δl

δv

]
◦ ηt =

d

dt

[(
δL

δẋ

)
◦ ηt
]

=
d

dt

δL

δẋ
. (28)

Meanwhile, for the RHS, a property of the Lie derivative is12

(Lua) ◦ ηt = Lu◦ηta ◦ ηt = Lu0a0. (29)

As a result, Eq. (27) becomes〈
d

dt

δL

δẋ
,u0

〉
= −

〈
δL

δa0
,Lu0a0

〉
. (30)

Then, define a∗0(X, t) with
da∗0
dt

= δ
δL

δa0
. (31)

After integrating and then varying Eq. (30) (note that a0 and u0 are fixed), one gets〈
δ
δL

δẋ
,u0

〉
= −〈a∗0,Lu0a0〉 . (32)

Mapping Eq. (32) back to the Eulerian labeling with η−1
t , we have〈(

δ
δL

δẋ

)
◦ η−1,u

〉
= −

〈
a∗, (Lu0a0) ◦ η−1

t

〉
= −〈a∗,Lua〉 , (33)

where a∗(x, t) = a∗0 ◦ η−1
t , and on the RHS the inverse of Eq. (29) is used. For the LHS, we

use the property of the material variation, the proof of which is similar with Eq. (28),

δ
δL

δẋ
= δ

[(
δL

δẋ

)
◦ ηt
]

=

[
(δ + Lξ)

δl

δv

]
◦ ηt, (34)

then Eq. (33) becomes〈
(δ + Lξ)

δl

δv
,u

〉
= −〈a∗,Lua〉 = 〈a∗ � a,u〉 . (35)

Since u can be arbitrary, we have one constraint, Eq. (22). Meanwhile, similar with Eqs.

(28) and (34), we have

da∗0
dt

= [(∂t + Lv)a∗] ◦ ηt, δ
δL

δa0
=

[
(δ + Lξ)

δl

δa

]
◦ ηt, (36)

and therefore Eq. (31) turns into the other constraint, Eq. (25).

So now we have used the new variables {ξ, a∗} instead of {δv, δa} to describe the per-

turbations, but are the new variables any better than the old ones? As it turns out, they
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are more useful since the algebraic constraints (22) and (23) capture the Euler-Poincare

structure of the system. One evidence is that, with Eqs. (22) and (23), the first variation

of the Hamiltonian

δh =

〈
δ
δl

δv
,v

〉
+

〈
δl

δv
, δv

〉
−
〈
δl

δa
, δa

〉
−
〈
δl

δv
, δv

〉
=

〈(
Lv

δl

δv
− δl

δa
� a
)
, ξ

〉
− 〈Lva, a

∗〉 (37)

is shown to automatically vanish when the system is at equilibrium, where the LHS of Eqs.

(17) and (18) both equal zero, just as expected.

To apply the above results to the ideal MHD, where a ∈ {s, ρ d3x,B · dS}, one defines

ρ∗ = v · ξ − β, s∗ = −ρα, B∗ = −ζ, (38)

then Eq. (22) becomes

δv = ξ × (∇× v) + (∇× ζ)×B/ρ+ α∇s−∇β, (39)

which is the same as Eq. (3), and Eq. (25) becomes

β̇ + v · ∇β = δp/ρ+ ξ · (∇×B)×B/ρ, (40)

α̇ + v · ∇α = δT + ξ · ∇T, (41)

ζ̇ + v · ∇ζ +∇v · ζ = δB + ξ · ∇B +∇ξ ·B. (42)

Eq. (39) was first introduced by Isichenko9. Together with Eqs. (6) - (8), it was also

obtained by Morrison10 from the non-canonical Poisson bracket and referred to as the “dy-

namically accessible” variations. However, neither of them provided detailed derivation.

Here we have rigorously derived it from the Euler-Poincare reduction, and meanwhile pre-

sented Eqs. (40) - (42) which describe the evolution of {β, α, ζ}, for the first time. From

Eqs. (9) and (40) - (42) it is clear that {ξ, β, α, ζ} are not arbitrary variables, just like

{δv, δρ, δs, δB} are not arbitrary since their dynamics are constrained by the linearized

ideal MHD equations.

In summary, Eqs. (6) - (9) and (39) - (42) combined are the complete set of con-

straints on ideal MHD perturbations. The algebraic constraints (6) - (8) and (39) express

{δv, δρ, δs, δB} in terms of the new variables {ξ, β, α, ζ}, while the dynamical constraints

(40) - (42) and (9) describe the evolution of the new variables {ξ, β, α, ζ}. It is straight-

forward to verify that the eight equations combined are equivalent to the linearized ideal
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MHD equations. It is worthwhile to address that the eight constraints work together as a

group. More specifically, the perturbation δv must satisfy both constraints (9) and (39) at

the same time, for instance. In Ref. 15, Eq. (39) and Eq. (9) are claimed to be equivalent

constraints on δv. But as discussed above, they are not equivalent, but they coexist.

In the next section, these constraints will be used to calculate the second variation of the

Hamiltonian and develop an energy principle.

V. THE ENERGY PRINCIPLE

As Eq. (37) suggests, with the variational constraints (39) and (6) - (8), the first variation

of the Hamiltonian2

δH =

∫
{(ρv · ∇s)α + [∇ · (ρv)]β − [∇× (v ×B)] · ζ

+ [ρv∇ · v − (∇×B)×B +∇p] · ξ} d3x (43)

vanishes when the system is at equilibrium, where the LHS of Eqs. (10) - (13) all equal zero.

Then, using Eqs. (39) and (6) - (8) again, one further obtains the second variation of the

Hamiltonian2

δ2H =

∫
ρ(δv − v · ∇ξ + ξ · ∇v)2 d3x+ δ2W, (44)

where δ2W is the effective potential energy,

δ2W =

∫
[ρ(ξ · ∇ξ) · (v · ∇v)− ρ(v · ∇ξ)2] d3x+ δ2W0, (45)

where the first two flow dependent terms come from the perturbed kinetic energy, while

δ2W0 is the second variation of the potential energy,

δ2W0 =

∫
[ρ∂ρp(∇ · ξ)2 + (∇ · ξ)(ξ · ∇p) + δB · (∇×B)× ξ + (δB)2] d3x. (46)

Note that so far we have only used the algebraic constraints (39) and (6) - (8), therefore δv

in Eq. (44) has the form as in Eq. (39). However, as discussed in Sec. IV, δv must satisfy

the dynamical constraint (9) at the same time. Substituting Eq. (9) into Eq. (44), one gets

δ2H =

∫
ρξ̇2 d3x+ δ2W. (47)

With the MHD Eqs. (10) - (13) the total Hamiltonian H can be proven to be conserved.

For an equilibrium perturbed by a small perturbation ξ, the Hamiltonian can be expanded as
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H = H0 + δ2H/2 +O[ξ3], where H0 is the fixed background Hamiltonian, and δ2H ∼ O[ξ2].

Therefore δ2H is conserved as a result of the conservation of H. It has been proven in Ref.

4 and 16 that when δ2H has the form as in Eq. 47, the necessary and sufficient condition

for the equilibrium to be stable is for δ2W to be positive for arbitrary ξ. This is our energy

principle for ideal MHD equilibria with flows. When there is no equilibrium flow (v = 0),

the first two terms in δ2W vanishes, and δ2W = δ2W0 recovers the standard energy principle

for equilibria with no flows3. However, note that the argument for the conservation of δ2H

holds only when ξ is a small-amplitude linear perturbation, and therefore the criterion is

only for the linear stability of the equilibrium.

As summarized in Sec. I, another stability criterion was previously obtained by Frieman

and Rotenberg1 from the linearized equation of motion, that the system is stable when

−
∫
ξ · F(ξ) d3x is positive definite. One can verify that −

∫
ξ · F(ξ) d3x = δ2W , so such

a stability criterion is equivalent to ours. However, the criterion was not explained in an

energy perspective in Ref. 1. To turn it into an energy principle for further comparison with

ours, we look into the effective Lagrangian and Hamiltonian constructed from the linearized

equation of motion:

L2 =

∫
[ρξ̇2 + 2ρξ̇ · (v · ∇ξ) + ξ · F(ξ)] d3x, (48)

H2 =

∫
[ρξ̇2 − ξ · F(ξ)] d3x. (49)

They were included in the appendix of Ref. 1 as an entertainment without further study.

However, by taking the time derivative of H2 and using Eq. (1) and the self-adjointness of

F(ξ), one finds that H2 is conserved, so the system is stable when −
∫
ξ ·F(ξ) d3x is positive

definite4. As H2 can be interpreted as the perturbed energy of the system, the criterion has

become an energy principle. It is obvious that H2 = δ2H, so the criterion by Frieman and

Rotenberg is indeed equivalent to ours discussed above. However, as H2 is constructed from

the linearized equation of motion, one must use the self-adjointness of F(ξ), the proof of

which requires tedious algebra, to show that H2 is conserved . On the other hand, obtained

as the second variation of the total Hamiltonian, δ2H is intrinsically conserved, which avoids

the algebra proving the self-adjointness of F(ξ). In fact, the self-adjointness of F(ξ) can be

indirectly proven5 as a result of the conservation of δ2H.

In addition, the authors would like to address that in Ref. 1 the linearized equation

of motion Eq. (1) was obtained with the equilibrium conditions and the constraints (6) -
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(9). Furthermore, the most straightforward way to obtain Eqs. (48) and (49) is to use the

equilibrium conditions and the constraints (6) - (9) to calculate the second variation of the

action δ2S =
∫
L2 dt, which directly gives the effective Lagrangian L2, and H2 and Eq. (1)

can also be derived thereafter. But again, the conservation of H2 has to be proven using the

self-adjointness of F(ξ).

VI. DISCUSSION

As discussed in Sec. IV, Eqs. (39) and (6) - (8) were previously obtained by Morrison10

and referred to as the “dynamically accessible” variations. Using them as constraints,

Hameiri2 obtained δ2H as in Eq. (44) where δv is in the form of Eq. (39) expressed in terms

of {ξ, β, α, ζ}. The positivity of δ2H in such form with respect to arbitrary {ξ, β, α, ζ} was

then claimed by Hameiri to be the stability criterion of the equilibrium, which is more useful

than the definiteness of δ2W , because the arbitrariness of {ξ, β, α, ζ} can be manipulated

for stability analysis. Following are the reasons why we believe such a result is not valid.

To begin with, the “dynamically accessible” variations, (39) and (6) - (8), were obtained

by Morrison10 with the non-canonical Poisson bracket for the ideal MHD, which is not sur-

prising because the Poisson bracket can also be derived from the Euler-Poincare reduction8.

When these constraints were obtained, no derivation was shown other than an argument

that they will automatically conserve all the Casimirs of the system. However, the existence

of relevant Casimirs is required for such an argument to stand. Admittedly, Eqs. (6) -

(8) correspond to the local conservation (advection) of mass, entropy, and magnetic flux

respectively, but so far there has been no simple explicit Casimir found that corresponds to

Eq. (39), despite the effort devoted17,18. On the other hand, in Sec. IV, Eq. (39) is, for

the first time, rigorously derived without any new Casimirs concerned. Therefore we believe

Eq. (39) is just a result of the Euler-Poincare structure of the ideal MHD, as shown in our

derivation, and the fundamental constants of motion in the ideal MHD are just the advected

quantities: the mass, the entropy, and the magnetic flux.

Moreover, in Ref. 2, {ξ, β, α, ζ} are claimed to be arbitrary variables, which can be used

for stability analysis. However, by considering the dynamics of the perturbations, we have

shown that {ξ, β, α, ζ} are in fact not arbitrary as their dynamics are constrained by Eqs.

(9) and (40) - (42), so such a claim does not stand. It was also claimed that (44) is a better

13



expression of δ2H than (47), but given the fact that δv must satisfy constraints (9) and (39)

simultaneously, Eqs. (44) and (47) are equivalent expressions for δ2H. In fact, we find the

latter expression of δ2H more useful, since it has been proven when δ2H is conserved and

in the form of Eq. (47), the definiteness of δ2W determines the stability of the equilibria4.

Last but not least, in Refs. 2, 9, and 10, the reason why the definiteness of δ2H can

determine the stability of the equilibrium was not clearly explained. As far as we can

understand from their discussion, it is a noncanonical analog of the Dirichlet’s theorem10,12,

which has only been proven for canonical systems. The core of such an analog is in fact the

energy Casimir method11,12, based on their interpretation that the dynamically accessible

variations are equivalent to the Casimirs. But as discussed above, such an interpretation

may not be correct. We believe that the role of δ2H in the stability concern is a conserved

quantity, which is a dynamical effect and was not discussed in their argument. In addition,

it is implied in Ref. 2, 9, and 10 that the definiteness of δ2H is a criterion for the nonlinear

stability of the ideal MHD equilibria, while our energy principle is for the linear stability.

In this paper we have proven the necessary and sufficient condition for ideal MHD equilib-

ria with flows to be linearly stable is for δ2W in Eq. (45) as the effective potential energy to

be positive for arbitrary ξ. The criterion is found equivalent to what Frieman and Rotenberg

previously proposed, but derived more straightforwardly from the second variation of the

Hamiltonian calculated with proper constraints. The difference from the standard energy

principle for ideal MHD equilibria with no flows are the first two flow-dependent terms which

come from the perturbed kinetic energy. In principle, any flow driven ideal MHD instability,

should come from these two terms. For example, the magnetorotational instability (MRI)

has been discussed from such a perspective19.

The derivation for the complete set of variational constraints applies to not only the ideal

MHD, but any continuum mechanics that has the Euler-Poincare structure. Therefore such

an approach for linear stability analysis can easily be applied to other systems, say, the

Vlasov-Maxwell system.

ACKNOWLEDGMENTS

The authors would like to thank C. Liu and J. Squire for helpful discussions. This work

was supported by the U.S. Department of Energy under Contract No. DE-AC02-09CH11466.

14



REFERENCES

1E. Frieman and M. Rotenberg, “On hydromagnetic stability of stationary equilibria,” Rev.

Mod. Phys., 32, 898 (1960).

2E. Hameiri, “Dynamically accessible perturbations and magnetohydrodynamic stability,”

Physics of Plasmas, 10, 2643 (2003).

3I. B. Bernstein, E. A. Frieman, M. D. Kruskal, and R. M. Kulsrud, “An energy principle

for hydromagnetic stability problems,” Proceedings of the Royal Society of London. Series

A. Mathematical and Physical Sciences, 244, 17 (1958).

4J. P. Freidberg, Ideal magnetohydrodynamics (Plenum Press, New York, NY, 1987).

5R. Kulsrud, “General stability theory in plasma physics,” in Advanced Plasma Theory,

Vol. 1 (1964) p. 54.

6J. Rice, A. Ince-Cushman, J. deGrassie, L.-G. Eriksson, Y. Sakamoto, A. Scarabo-

sio, A. Bortolon, K. Burrell, B. Duval, C. Fenzi-Bonizec, M. Greenwald, R. Groebner,

G. Hoang, Y. Koide, E. Marmar, A. Pochelon, and Y. Podpaly, “Inter-machine compari-

son of intrinsic toroidal rotation in tokamaks,” Nuclear Fusion, 47, 1618 (2007).

7D. D. Holm, J. E. Marsden, and T. S. Ratiu, “The euler-poincare equations and semidi-

rect products with applications to continuum theories,” Advances in Mathematics, 137, 1

(1998), ISSN 0001-8708.

8D. Holm, T. Schmah, and C. Stoica, Geometric Mechanics and Symmetry: From Finite

to Infinite Dimensions , Oxford Texts in Applied and Engineering Mathematics (OUP

Oxford, 2009) ISBN 9780199212903.

9M. B. Isichenko, “Nonlinear hydrodynamic stability,” Phys. Rev. Lett., 80, 972 (1998).

10P. J. Morrison, “Hamiltonian description of the ideal fluid,” Rev. Mod. Phys., 70, 467

(1998).

11D. D. Holm, J. E. Marsden, T. Ratiu, and A. Weinstein, “Nonlinear stability of fluid and

plasma equilibria,” Physics Reports, 123, 1 (1985).

12J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry: a basic exposition

of classical mechanical systems, Vol. 17 (Springer, 1999).

13V. Arnold, “Variational principle for three-dimensional steady-state flows of an ideal fluid

(steady flow possessing extremal kinetic energy compared to equivortex flow for stability

analysis),” PMM-JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 29,

15



1002 (1965).

14W. A. Newcomb, “Lagrangian and hamiltonian methods in magnetohydrodynamics,” Nu-

clear Fusion Supplement, 2, 451 (1962).

15J. Thiffeault and P. Morrison, “Nonlinear mhd stability and dynamical accessibility,” in

APS Meeting Abstracts, Vol. 1 (2002) p. 1004.

16G. Laval, C. Mercier, and R. Pellat, “Necessity of the energy principles for magnetostatic

stability,” Nuclear Fusion, 5, 156 (1965).

17E. Hameiri, “Variational principles for equilibrium states with plasma flow,” Physics of

Plasmas, 5, 3270 (1998).

18A. V. Kats, “Canonical description of ideal magnetohydrodynamic flows and integrals of

motion,” Phys. Rev. E, 69, 046303 (2004).

19I. V. Khalzov, A. I. Smolyakov, and V. I. Ilgisonis, “Energy of eigenmodes in magneto-

hydrodynamic flows of ideal fluids,” Physics of Plasmas, 15, 054501 (2008).

16



 
 
 
 



The Princeton Plasma Physics Laboratory is operated 
by Princeton University under contract 
with the U.S. Department of Energy. 

 
Information Services  

Princeton Plasma Physics Laboratory 
P.O. Box 451 

Princeton, NJ 08543 
 
 
 
 

Phone: 609-243-2245 
Fax: 609-243-2751 

e-mail: pppl_info@pppl.gov 
Internet Address: http://www.pppl.gov 


	M_Richman_extender.pdf
	Background
	Extender
	Parallel Algorithms

	Speed Optimization
	Efficient Parallelization
	Optimizing Representation of Plasma Surface
	Results


	Automation
	Fortran 90 module
	Generalized PBS job scripts

	Conclusion
	PBS batch job template


	report number: 4858
	Title: An Energy Principle for Ideal MHD Equilibria with Flows
	Date: March, 2013
	authors: Yao Zhou and Hong Qin 


