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Abstract

The gyrocenter dynamics of charged particles in time-independent magnetic fields is a non-

canonical Hamiltonian system. The canonical description of the gyrocenter has both theoretical

and practical importance. We provide a general procedure of the gyrocenter canonicalization,

which is expressed by the series of a small variable ϵ depending only on the parallel velocity u and

can be expressed in a recursive manner. We prove that the truncation of the series to any given

order generates a set of exact canonical coordinates for a system, whose Lagrangian approximates

to that of the original gyrocenter system in the same order. If flux surfaces exist for the magnetic

field, the series stops simply at the second order and an exact canonical form of the gyrocenter

system is obtained. With the canonicalization schemes, the canonical symplectic simulation of

gyrocenter dynamics is realized for the first time. The canonical symplectic algorithm has the

advantage of good conservation properties and long-term numerical accuracy, while avoiding nu-

merical instability. It is worth mentioning that explicitly expressing the canonical Hamiltonian in

new coordinates is usually difficult and impractical. We give an iteration procedure that is easy

to implement in the original coordinates associated with the coordinate transformation. This is

crucial for modern large-scale simulation studies in plasma physics. The dynamics of gyrocen-

ters in the dipole magnetic field and in the toroidal geometry are simulated using the canonical

symplectic algorithm by comparison with the higher-order non symplectic Runge-Kutta scheme.

The overwhelming superiorities of the symplectic method for the gyrocenter system are evidently

exhibited.

∗ jliuphy@ustc.edu.cn
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I. INTRODUCTION

The dynamics of charged particles in magnetized plasmas consists of the fast gyromotion

and the slow guiding center motion. To deal with low frequency phenomena, the gyrokinetic

theory has been developed to resolve the multi-scale problem by averaging out or separating

the fast gyromotion from the slow gyrocenter motion[1–3]. Gyrokineics provides powerful

analytical tools and effective simulation models for the study of magnetized plasmas[1–15].

The gyrocenter system, rooting from the gyro-symmetry, are usually represented by non-

canonical gyrocenter coordinates. Its canonicalization can benefit the fundamental theory as

well as the advanced simulation techniques. In this paper, we provide a general procedure of

constructing canonical coordinates for the gyrocenter dynamics in time-independent electro-

magnetic fields in a series form. The canonical coordinates thus can be achieved recursively,

without solving the differential equations as in the standard proof of Darboux’s theorem.

We prove that the truncation of this series to any given order can lead to an exact canonical

form for a system, while the Lagrangian of this system approximates to that of the original

gyrocenter system in the same order of the truncation. Moreover, if the magnetic field has

flux surfaces, the series terminates naturally at the second order and a set of exact canon-

ical coordinates of the gyrocenter system can be obtained directly. This canonicalization

scheme can be applied to symplectic simulation of gyrocenter dynamics conveniently. We

design the symplectic algorithm for gyrocenter system for the first time, on the basis of the

canonicalization. We simulated the gyrocenter dynamics in a dipole magnetic field and a

toroidal configuration using the canonical symplectic algorithm and a higher-order Runge-

Kutta method for comparison. The long-term conservation properties, numerical accuracy,

and numerical stability of canonical symplectic simulation for gyrocenter systems are amply

demonstrated in the study.

The symplectic method is a well-known numerical integrator with global conservation

properties for canonical Hamiltonian system. It has been successfully applied to test parti-

cle simulation and even the PIC method in the study of plasma physics[16]. The standard

symplectic scheme requires a canonical structure of the dynamical system. Unfortunately,

because the gyrocenter coordinates are non-canonical, the symplectic simulation for gyro-

center system is beset with difficulties. Recently, many efforts have been devoted to the

symplectic simulation of gyrocenter dynamics. One plan is to make use of the variation-
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al symplectic scheme[17–19]. However, because of its multi-step nature, the variational

symplectic algorithm for gyrocenter dynamics sometimes process unexpected numerical in-

stability. An alternative approach is to develop a general and practical procedure of the

canonicalization of the gyrocenter system. Then the standard canonical symplectic scheme

for gyrocenter dynamics can be applied. According to Darboux’s theorem, local canonical

coordinates can be theoretically found through solving differential equations. For the gyro-

center dynamics in magnetic fields, several attempts have been made to find the canonical

coordinates. Meiss and Hazeltine discussed the existence of the canonical coordinates of the

gyrocenter systems, but their canonical scheme is impractical for numerical simulations[20].

White, Zakharov [21] and Gao [22] studied the canonical form of the gyrocenter motion in

magnetic fields with toroidal flux-surfaces in detail. Different from the previous methods,

we provide a set of direct formulae in which the coordinate transformation is expressed by

the series of a small quantity ϵ, which depends on the parallel velocity u, and achieved

in a recursive manner. In the process, only matrix multiplication is required, instead of

solving differential equations. For numerical calculations, the manipulation of matrices is

much more effective than solving differential equations. Furthermore, there is no assumption

on properties of the magnetic fields in this canonicalization scheme. Because the series is

formally infinite, it should be truncated to contain only finite terms when applying to a spe-

cific magnetic configuration. However, the truncated system still preserve good lagrangian

structure. We prove that the truncation of the series to any given order generates a set of

exact canonical coordinates for the system, whose Lagrangian approximates to that of the

original gyrocenter system to the same order of the truncation.

Commonly, the equilibrium magnetic fields we dealt with in plasma physics are not chaot-

ic. This kind of magnetic fields form flux surfaces, i.e., there exists a scalar function Ψ such

that B · ∇Ψ = 0. With this assumption, the series form of canonicalization naturally termi-

nates at the second order. So the exact canonical coordinates of the gyrocenter system in a

magnetic with flux surfaces can be obtained conveniently. In this case, the canonicalization

of the gyrocenter system and the canonical symplectic simulation of gyrocenter dynamics

can be achieved without any approximation.

Once the canonical coordinates of the gyrocenter system are obtained, we can apply s-

tandard canonical symplectic methods to the study of gyrocenter dynamics. The symplectic

Runge-Kutta methods are a class of broadly used symplectic implicit methods. When they
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are applied to the canonicalized gyrocenter systems, the problem of expressing the Hamil-

tonian function in new coordinates is revealed. That’s because generally speaking, unless

in some special cases, the inverse of this coordinates transformation and hence the new

Hamiltonian are quite difficult to express. Here, we give a convenient iteration for numerical

computing with original coordinates, in which the calculation of the gradient of the new

Hamiltonian is avoided. Then the canonical symplectic simulation of gyrocenter dynamics

can be realized.

To verify the correctness of the canonicalization and the advantage of the canonical

symplectic simulation, the numerical examples of gyrocenter dynamics in the magnetic fields

with dipole and toroidal configuration are carried out. We apply the mid-point rule (a 2nd-

order symplectic Runge-Kutta method) to simulate the particle’s motion, while observing

the evolution of the energy of the gyrocenter systems. The numerical results form the

canonical symplectic method have better accuracy and conservation properties than that

from the implicit Runge-Kutta method of order 3 applied directly to the non-canonical

gyrocenter system in long-term simulation. The canonicalization procedure developed here

can be applied to modern large-scale gyrokinetic simulation in both space plasmas and fusion

plasmas, where the long-term accuracy and fidelity of algorithms are critical.

The paper is organized as follows. In Sec. II, we discuss the canonicalization of the

gyrocenter system in the series form in general. The truncations of the series are also

investigated. In Sec. III, we discuss the exact canonical scheme for magnetic fields with

flux surfaces. In Sec. IV, we focus on how to construct the canonical symplectic method

of the gyrocenter system. Then in Sec. V, numerical examples of gyrocenter dynamics

using canonical symplectic algorithms are given. By comparison with the higher-order non-

symplectic Runge-Kutta method, the correctness and advantage of the canonicalization and

symplectic scheme of the gyrocenter dynamics are verified. Finally in Sec. VI, we give a

brief summary and future plan on this topic.

II. THE CANONICALIZATION OF GYROCENTER DYNAMICS

In this section, we discuss how to canonicalize the gyrocenter system in general. The

Lagrangian of the gyrocenter system can be written as[2]

L(X, Ẋ, u, u̇) = [A(X) + ub(X)] · Ẋ− [
1

2
u2 + µB(X) + ϕ(X)], (1)
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where B = ∇×A is the magnetic field, b = B/B(X) = (b1, b2, b3)
⊤ is the unit vector along

the direction of magnetic field, X and u are the position coordinates of the gyrocenter and

parallel velocity respectively, and µ is the magnetic moment, which is an adiabatic invariant.

A = (A1, A2, A3)
⊤ is the vector potential normalized by cm/e, and ϕ is the scalar potential

normalized by m/e. The electromagnetic field is assumed to be time-independent in Eq. (1).

The Euler-Lagrange equations of L with respect to X = (x, y, z)⊤ and u give the gyrocenter

motion equation

K(v)v̇ = ∇H(v) (2)

where v = (X⊤, u)⊤, H(v) = 1
2
u2 + µB(X) + ϕ(X) and K(v) is an antisymmetric matrix

K(v) =


0 a12 a13 −b1

−a12 0 a23 −b2

−a13 −a23 0 −b3

b1 b2 b3 0


,

a12 = (
∂A2

∂x
− ∂A1

∂y
) + u(

∂b2
∂x

− ∂b1
∂y

),

a13 = (
∂A3

∂x
− ∂A1

∂z
) + u(

∂b3
∂x

− ∂b1
∂z

),

a23 = (
∂A3

∂y
− ∂A2

∂z
) + u(

∂b3
∂y

− ∂b2
∂z

).

(3)

In the gyrocenter motion equations, the determinant of the matrix K is

det(K(v)) = |b · ∇ × (A+ ub)|2 .

If the condition det(K(v)) ̸= 0 holds, Eq. (2) can be written as a general Hamiltonian

system

v̇ = K(v)−1∇H(v). (4)

The system Eq. (4) is a non-canonical Hamiltonian system. At the same time, a canonical

Hamiltonian system, which we struggle to seek, should take the form of

Ż = J−1∇H(Z), J =

 0 In

−In 0

, (5)
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where Z ∈ R2n. According to Darboux’s theorem, for a non-canonical Hamiltonian system

we can find theoretically the local canonical coordinates by solving differential equations,

which is an uneconomic method for numerical purpose. To avoid solving differential equa-

tions, we don’t follow the steps given in the standard proof of Darboux’ theorem. Instead,

we explore another procedure to realize the canonicalization of the gyrocenter system. Let

Z = Φ(v) be a transformation from R4 to R4, according to the chain rule, Eq. (4) can be

written as

Ż = (
∂Φ

∂v
)K(v)−1(

∂Φ

∂v
)⊤∇H̃(Z) (6)

where H̃(Z) = H(v). If we demand (∂Φ
∂v
)K(v)−1(∂Φ

∂v
)⊤ = J−1, i.e., K(v) = (∂Φ

∂v
)⊤J(∂Φ

∂v
),

Eq. (6) becomes a canonical Hamiltonian system in new coordinates Z through this transfor-

mation. Denoting Φ : x 7→ p1(v), y 7→ p2(v), z 7→ q1(v), u 7→ q2(v), we find the coordinates

transformation Φ should satisfy the following conditions:

(
∂p1
∂x

∂q1
∂y

− ∂q1
∂x

∂p1
∂y

) + (
∂p2
∂x

∂q2
∂y

− ∂q2
∂x

∂p2
∂y

) = a12,

(
∂p1
∂x

∂q1
∂z

− ∂q1
∂x

∂p1
∂z

) + (
∂p2
∂x

∂q2
∂z

− ∂q2
∂x

∂p2
∂z

) = a13,

(
∂p1
∂y

∂q1
∂z

− ∂q1
∂y

∂p1
∂z

) + (
∂p2
∂y

∂q2
∂z

− ∂q2
∂y

∂p2
∂z

) = a23, (7)

(
∂p1
∂x

∂q1
∂u

− ∂q1
∂x

∂p1
∂u

) + (
∂p2
∂x

∂q2
∂u

− ∂q2
∂x

∂p2
∂u

) = −b1,

(
∂p1
∂y

∂q1
∂u

− ∂q1
∂y

∂p1
∂u

) + (
∂p2
∂y

∂q2
∂u

− ∂q2
∂y

∂p2
∂u

) = −b2,

(
∂p1
∂z

∂q1
∂u

− ∂q1
∂z

∂p1
∂u

) + (
∂p2
∂z

∂q2
∂u

− ∂q2
∂z

∂p2
∂u

) = −b3.

We reorganize Eq. (7) to a concise form and get the following theorem.

Theorem 1 The canonical coordinates Z = (p1, p2, q1, q2)
⊤ for the gyrocenter dynamics

satisfy the following equations:
∇p1 ×∇q1 +∇p2 ×∇q2 = ∇×A+ u∇× b,

∇p1
∂q1
∂u

−∇q1
∂p1
∂u

+∇p2
∂q2
∂u

−∇q2
∂p2
∂u

= −b,
(8)

where ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z
)⊤, A is the vector potential and b is the unit vector along the direction

of magnetic field in the gyrocenter dynamics.

The theorem offers an equivalent description for the canonical coordinates in the general

sense, which enable us to obtain the canonical form of the gyrocenter system. Considering
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the first equation of Eq. (8) is linear with respect to u, we expand the new coordinates

p1, p2, q1, q2 in the series of u as

p1(v) = p10(X) +
+∞∑
i=1

uip1i(X),

p2(v) = p20(X) +
+∞∑
i=1

uip2i(X),

q1(v) = q10(X) +
+∞∑
i=1

uiq1i(X),

q2(v) = q20(X) +
+∞∑
i=1

uiq2i(X).

(9)

Submitting the expansion series to Eq. (8) and comparing the coefficients of uk, we can

obtain the equations for the coefficients,

∇p10 ×∇q10 +∇p20 ×∇q20 = ∇×A, (10)

q11∇p10 − p11∇q10 + q21∇p20 − p21∇q20 = −b, (11)

q1k∇p10 − p1k∇q10 + q2k∇p20 − p2k∇q20 =

−1

k

( k−1∑
i=1

iq1i∇p1,k−i −
k−1∑
i=1

ip1i∇q1,k−i

+
k−1∑
i=1

iq2i∇p2,k−i −
k−1∑
i=1

ip2i∇q2,k−i

)
. (12)

The canonical coordinates are expressed in series form and can be calculated recursively. In

the process of numerical calculation, only matrix multiplication, instead of solving differen-

tial equations, is involved.

To express the canonical coordinates in terms of the old gyrocenter coordinates, we need

to use the expression of the magnetic field. Generally speaking, the vector potential A can

be expressed in any coordinates (α, β, γ) as A = Aα∇α + Aβ∇β + Aγ∇γ. This formula

can be transformed to another form

A = ∇η + p10∇q10 + p20∇q20, (13)

where q10 = β, q20 = γ, η =
∫ α

Aα(α
′
, β, γ)dα

′
, p10 = Aβ − ∂η/∂β and p20 = Aγ −

∂η/∂γ. Then the formula Eq. (10) is satisfied automatically. Without loss of generality,

∇p10, ∇p20, ∇q20 can be taken to be linearly independent. Apparently, there are too
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many freedoms to determine the coefficients of the series. Further restrictions should be

applied. Setting q2k = 0, for k ≥ 1, we can get q11, p11 and p21 from Eq. (11) using matrix

multiplication


q11

p11

p21

 = (∇p10,−∇q10,−∇q20)−1(−b). (14)

Then p1k, q1k and p2k, for k > 1, can be obtained recursively from Eq. (12) in a similar

manner. In this process, no solving of differential equations is involved, which is different

from the standard proof of Darboux’s theorem.

The canonical coordinates of gyrocenter dynamics are expressed by series of the parallel

velocity u. To further study the property of the series, we can rewrite it as a series of a

dimensionless variable ϵ. We define the dimensionless variable ϵ = mu
qBLB

, where LB = B
|∇B|

is the characteristic length of the magnetic field. The condition for the gyrocenter dynamics

to be valid is ϵ ≪ 1. So the canonical coordinates can be expressed by series of a small

variable ϵ depending only on the parallel velocity u,

p1 = p10 +
∞∑
i=1

ϵip̂1i, p2 = p20 +
∞∑
i=1

ϵip̂2i,

q1 = q10 +
∞∑
i=1

ϵiq̂1i, q2 = q20 +
∞∑
i=1

ϵiq̂2i.

(15)

The truncation of the series at a given order is an asymptotic approximation to the exact

canonical coordinates as ϵ→ 0. Actually, the first order truncation, i.e., p̃1 = p10+ϵp̂11, p̃2 =

p20 + ϵp̂21, q̃1 = q10 + ϵq̂11 and q̃2 = q20, satisfies the following equations

∇p̃1 ×∇q̃1 +∇p̃2 ×∇q̃2

=B+ u∇× b− ϵ2

2
∇× (q̂11∇p̂11 − p̂11∇q̂11),

(16)

∇p̃1
∂q̃1
∂u

−∇q̃1
∂p̃1
∂u

+∇p̃2
∂q̃2
∂u

−∇q̃2
∂p̃2
∂u

=−
[
b− ϵ(q̂11∇p̂11 − p̂11∇q̂11)

]
.

(17)

The truncation at the first-order leads to canonical coordinates for a gyrocenter system

corresponding to an exact lagrangian L1

L1 =
[
A(X) + ub(X)− ϵ2

2
(q̂11∇p̂11 − p̂11∇q̂11)

]
· Ẋ−H(v). (18)
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Similarly, the k-th order approximate canonical coordinates

p̃1 =
k∑

i=0

uip1i, q̃1 =
k∑

i=0

uiq1i, p̃2 =
k∑

i=0

uip2i, q̃2 = q20, (19)

satisfy

∇p̃1
∂q̃1
∂u

−∇q̃1
∂p̃1
∂u

+∇p̃2
∂q̃2
∂u

−∇q̃2
∂p̃2
∂u

=
( k∑

i=0

ui∇p1i
)( k∑

i=1

iui−1q1i
)
−
( k∑

i=0

ui∇q1i
)( k∑

i=1

iui−1p1i
)

+
( k∑

i=0

ui∇p2i
)( k∑

i=1

iui−1q2i
)
−
( k∑

i=0

ui∇q2i
)( k∑

i=1

iui−1p2i
)

=− b+
k−1∑
l=1

ul
[( l+1∑

m=1

mq1,m∇p1,l+1−m −mp1,m∇q1,l+1−m

+mq2,m∇p2,l+1−m −mp2,m∇q2,l+1−m

)]
+O(uk)

=− b+O(uk) = −b+O(ϵk).

(20)

In Eq. (20), the third equality holds because (q1i, p1i, p2i) are chosen to satisfy Eq. (12).

On the other hand, p̃1, q̃1, p̃2 and q̃2 also satisfy

∇p̃1 ×∇q̃1 +∇p̃2 ×∇q̃2 = B+ u∇× b+O(ϵk+1). (21)

We observe that the truncation at the k-order for canonical coordinates are the exact canon-

ical coordinates for the gyrocenter system with the Lagrangian Lk

Lk = (A(X) + ub+O(ϵk+1))Ẋ−H(v), (22)

which is k-order approximation to the original Lagrangian. The truncation of the series of

the canonical coordinates as the exact canonical coordinates for the approximate Lagrangian

is not only convenient in numerical simulations, but also has a physical meaning.

III. THE CANONICALIZATION OF GYROCENTERS IN MAGNETIC FIELDS

WITH FLUX SURFACES

In this section, we give the canonicalization of gyrocenter systems in magnetic fields with

flux surfaces. This kind of magnetic fields satisfies B · ∇Ψ = 0, where Ψ is the flux label. If
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it can be written in two forms asB = ∇p1 ×∇q10 +∇p2 ×∇q20,

B = q11∇p1 + q21∇p2.
(23)

According to the theorem in Sec. II, because the magnetic field can be expressed in the

above two forms, the recursive process for the coefficients of the series terminates at the

second order. Then the canonical coordinates can be explicitly given as

p1, q1 = q10 −
u

B(x)
q11,

p2, q2 = q20 −
u

B(x)
q21,

(24)

and the gyrocenter dynamics become canonical Hamiltonian system in the new coordinates.

Previous work[20, 21] have also assumed the forms of magnetic field in Eq. (23).

In the following, we will describe why the magnetic field can be written in two forms

as Eq. (23). Firstly, we find two functions p1(x, y, z) and p2(x, y, z) such that ∇p1 · ∇Ψ =

∇p2 · ∇Ψ = 0. Thus, (p1, p2, Ψ) forms a well defined curvilinear coordinate system with

the following properties 
∇p1 ×∇p2 = gΨ∇Ψ,

∇p1 ×∇Ψ = f1∇p1 + f2∇p2,

∇p2 ×∇Ψ = g1∇p1 + g2∇p2,

(25)

where f1, f2, g1, g2 and gΨ are related functions. In this flux surface coordinate system,

the magnetic field B has the covariant representation:

B = B1∇p1 +B2∇p2. (26)

According to Eq. (25), we rewrite B as

B = ∇p1 ×∇F1(p1, p2, Ψ) +∇p2 ×∇F2(p1, p2, Ψ)

=

(
∂F1

∂Ψ
f1 +

∂F2

∂Ψ
g1

)
∇p1 +

(
∂F1

∂Ψ
f2 +

∂F2

∂Ψ
g2

)
∇p2

+ (
∂F1

∂p2
− ∂F2

∂p1
)gΨ∇Ψ.

(27)

In general, the three directions ∇p1, ∇p2 and ∇Ψ are independent. So the functions F1 and
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F2 should satisfy the following conditions

∂F1

∂Ψ
f1 +

∂F2

∂Ψ
g1 = B1,

∂F1

∂Ψ
f2 +

∂F2

∂Ψ
g2 = B2,

∂F1

∂p2
− ∂F2

∂p1
= 0.

(28)

To let F1 and F2 satisfy Eq. (28), we define
F1 =

∫ Ψ B1g2 −B2g1
g2f1 − g1f2

dΨ
′
,

F2 = −
∫ Ψ B1f2 −B2f1

g2f1 − g1f2
dΨ

′
.

(29)

According to the definition of Jacobian J ≡ ∇p1 · (∇p2 ×∇Ψ) and Eq. (25), we get

g2f1 − g1f2

=− Jg2
∇p1 · ∇p2

=
Jg1

|∇p2|2
=

Jf1
∇p1 · ∇p2

= − Jf2
|∇p1|2

.
(30)

If ∇p1 · ∇p2 = 0, Eq. (30) degenerates to −g1f2 = Jg1
|∇p2|2 ,= − Jf2

|∇p1|2 . We know that g2f1 −

g1f2 ̸= 0, which guarantees that F1 and F2 in Eq. (29) are meaningful. Obviously, F1 and F2

are well defined and automatically satisfy the first two equations in Eq. (28). Furthermore,

using Eq. (30), we get 
∂F1

∂p2
= − ∂

∂p2

∫ Ψ B · ∇p2
J

dΨ
′
,

∂F2

∂p1
=

∂

∂p1

∫ Ψ B · ∇p1
J

dΨ
′
.

(31)

It can be verified that Eq. (28) is equivalent to the divergence-free property of the magnetic

field,

0 = ∇ ·B = J

[
∂

∂p1

(
B · ∇p1

J

)
+

∂

∂p2

(
B · ∇p2

J

)]
. (32)

This is physically correct and self-consistent. Thus the canonical coordinates are
p1, q1 = F1 −

u

B
B1,

p2, q2 = F2 −
u

B
B2,

(33)

where F1 and F2 are defined in Eq. (29). If ∇p1 and ∇p2 are orthogonal, the transformation

also holds. Therefore exact canonical coordinates of the gyrocenter system in a magnetic

with flux surfaces can be constructed and canonical symplectic simulation of gyrocenter

dynamics can be performed without any approximation.
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IV. THE CANONICAL SYMPLECTIC SIMULATION OF GYROCENTER DY-

NAMICS

With the effective canonicalization procedure for gyrocenter systems discussed in Sec-

s. II and III, we explicitly constructed a transformation Z = Φ(v) that brings non-

canonical Hamiltonian system v̇ = K−1(v)∇H(v) to the standard Hamiltonian system

Ż = J−1∇H̃(Z). We now set foot in the canonical symplectic simulation of gyrocenter dy-

namics. The symplectic method is a well-known numerical integrator with appropriate global

conservation properties for Hamiltonian systems with a canonical structure. This integrator

conserves the canonical symplectic structure exactly and guarantees that the energy error

is bounded by a small number for all the time steps[23–31]. According to the traditional

procedure, the symplectic algorithm should be proceed as follows: (i) compute Zn = Φ(vn);

(ii) apply a symplectic method to the standard system which yields Zn+1 = ψh(Zn); (iii)

compute finally vn+1 from Zn+1 = Φ(vn+1).

One kind of convenient and useful symplectic methods is the symplectic Runge-Kutta

method. A standard Runge-Kutta method can be expressed as
Zn+1 = Zn + h

s∑
i=1

biJ
−1∇H̃(Ki),

Ki = Zn + h

s∑
j=1

aijJ
−1∇H̃(Kj).

(34)

where Ki are intermediate variables. If the coefficients satisfy

biaij + bjaji = bibj, for all i, j, (35)

the Runge-Kutta method is a symplectic method[25].

In the numerical method, the corresponding Hamiltonian function H̃ should be expressed

as H̃(Z) = H(v), where H̃ = H◦Φ−1. Generally speaking, it’s difficult to express the inverse

of this coordinate transformation and thus the new Hamiltonian in new coordinates. Here, to

overcome the difficulty, we express the Hamiltonian function H̃(Z) and the term J−1∇H̃(Z)

in the original coordinates v as

H̃(Z) = H(v), (36)

J−1∇H̃(Z) = (
∂Φ

∂v
)K(v)−1∇H(v). (37)
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Equation (37) holds because of the chain rule

J−1∇H̃(Z) = Ż =
∂Φ

∂v
v̇ = (

∂Φ

∂v
)K(v)−1∇H(v). (38)

The fact that the coordinates transformation is reversible guarantees that for every Ki,

there is a corresponding Wi, such that J−1∇H̃(Ki) =
(
∂Φ
∂v

)
K(v)−1∇H(v)

∣∣∣∣
v=Wi

. Then the

symplectic simulation for the gyrocenter dynamics Eq. (34) can be rewritten as
Φ(vn+1) = Φ(vn) + h

s∑
i=1

bi
(∂Φ
∂v

)
K(v)−1∇H(v)

∣∣∣∣
v=Wi

,

Φ(Wi) = Φ(vn) + h

s∑
j=1

aij
(∂Φ
∂v

)
K(v)−1∇H(v)

∣∣∣∣
v=Wj

.

(39)

The iteration method is convenient for computing and the calculating of the gradient of

the new Hamiltonian function H̃ is avoided. Though the iteration is expressed normally

in the original coordinates, it’s essentially the symplectic simulation for the canonicalized

gyrocenter dynamics in new coordinates, which means that symplectic simulation of the

gyrocenter dynamics is realized. For example, when we apply the mid-point rule which is a

symplectic and reversible method of order 2,

Zn+1 = Zn + hJ−1∇H(
Zn + Zn+1

2
), (40)

to the transformed canonical Hamiltonian system, the following implicit iterations in the

coordinate vn 
Φ(vn+1) = Φ(vn) + h

(∂Φ
∂v

)
K(v)−1∇H(v)

∣∣∣∣
v=W

,

Φ(W ) = Φ(vn) +
1

2
h
(∂Φ
∂v

)
K(v)−1∇H(v)

∣∣∣∣
v=W

,

(41)

should be solved according to the above discussion.

In this canonical symplectic algorithm, numerical calculations are done directly using the

original non-canonical coordinates. This involves multiplication by the Jacobian matrix.

So rather than the expression of the canonical coordinates themselves, it is the Jacobian

matrix that is needed. According to the procedure of the canonicalization, the canonical

coordinates is expressed as a series in a small parameter linked to the parallel velocity. The

zeroth order term can be readily computed from ∇ ×A, and higher order terms can then

be obtained by solving a linear system at each order. For example, to calculate p1i, p2i, q1i,

14



the gradients of p1j, p2j, q1j (0 ≤ j ≤ i − 1) are required. In this process, the Jacobian

matrix is automatically obtained as

∂Φ

∂v
=

 ∑k
i=0∇p1i

∑k
i=0∇p2i

∑k
i=0∇q1i

∑k
i=0∇q2i∑k

i=1 ip1iu
i−1

∑k
i=1 ip2iu

i−1
∑k

i=1 iq1iu
i−1

∑k
i=1 iq2iu

i−1

T

(42)

The advantage of this method is the avoidance of the back-and-forth transform of coordi-

nates. So the inverse of the Jacobian matrix, which is usually difficult to calculate, is no

longer required.

V. APPLICATION EXAMPLES

In this section, we give two application examples of our canonicalization method for

the gyrocenter dynamics and apply symplectic method to the canonicalized Hamiltonian

system. The numerical results demonstrate the superb properties of symplectic methods

applied to the canonicalized gyrocenter equations in preserving the energy in long-time

integration, compared to non-symplectic Runge-Kutta method applied directly to guiding-

center equations itself.

A. Dipole magnetic field

For the gyrocenter dynamics in a dipole magnetic field, such as the earth magnetic field,

we first give the canonical coordinates using canonicalization method discussed in Sec. II.

Then the mid-point rule is applied to the canonical Hamiltonian system.

1. The canonical coordinates

The dipole magnetic field B is chosen to be

B(X) = (−M 3xz

r5
,−M 3yz

r5
,−M 2z2 − x2 − y2

r5
), (43)
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where r =
√
x2 + y2 + z2 andM is a constant. The corresponding vector potential, the field

strength B(X) and unit magnetic field b(X) can be written as

A(X) = (
My

r3
,−Mx

r3
, 0),

B(X) =M
r
√
r2 + 3z2

r5
,

b(X) = (− 3xz

r
√
r2 + 3z2

,− 3yz

r
√
r2 + 3z2

,−2z2 − x2 − y2

r
√
r2 + 3z2

).

(44)

Following the steps given in Sec. II, the vector potential can be written as

A =M
x2 + y2

r3
∇arctan(

x

y
), (45)

We set p10 = M x2+y2

r3
, q10 = arctan(x

y
), p10 = any function and q20 = 0. Then solving

Eq. (11), we get q11 = p11 = p21 = 0 p20 = − z
r3

and q21 = r4√
r2+3z2

. Because of q11 = p11 =

p21 = 0, we don’t need to solve Eq. (12) any more. The exact coordinates transformation is

linear with respect to u and can be obtained as

p1 =M
x2 + y2

r3
, p2 = − z

r3
,

q1 = arctan(
x

y
), q2 = u

r4√
r2 + 3z2

.

(46)

The energy H(v) is an invariant in original coordinates, and in new coordinates the Hamilto-

nian function H(v) = H̃(Z) is also invariant. In numerical experiments, whether the energy

error can be bounded is an important criterion.

2. The numerical results

For the gyrocenter dynamics in the dipole magnetic field, we first apply a non-symplectic

implicit Runge-Kutta method of order 3 (RK3)

ṽn+1 = vn +
h

2
J−1∇H(K1) +

h

2
J−1∇H(K2),

K1 = vn +
h

2
J−1∇H(K1)−

√
3h

6
J−1∇H(K2),

K2 = vn +

√
3h

6
J−1∇H(K1) +

h

2
J−1∇H(K2).

(47)

to the non-canonical Hamiltonian system to simulate particle’s motion. Then we apply

the mid-point rule which is a symplectic method of order 2 to the canonicalized gyrocenter

16
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FIG. 1. Numerical results in a dipole field. [Fig. 1(a)] Orbit numerically obtained by using the

standard RK3 method and [Fig. 1(b)] that obtained by the mid-point rule. [Fig. 1(c)] Normalized

energy H/H0 as a function of time for both methods, where H0 is the initial energy. The time-step

size is h=0.01≈ T/100. The integration time is 1000 periods of the orbit in the poloidal (azimuthal)

plane.

equations. Displayed in Fig. (1) is the comparison of particle’s orbit in dipole magnetic

field calculated by the RK3 method and by mid-point rule with the same initial conditions.

In these numerical examples, the parameters are chosen to be M = 1000 and µ = 0.01.

The initial conditions are X0 = (1, 1, 1) and u0 = 0.01. In Fig. 1(a), the orbit by RK3

applied to the gyro-center equations is not accurate, while the orbits calculated by mid-

point rule applied to the canonicalized gyro-center equations in Fig. 1(b) is accurate over

long integration time. Fig. 1(c) shows the evolution of the energy by the two methods and

demonstrates the significant advantage of symplectic methods applied to the canonicalized

Hamiltonian system in preserving energy for long-time integration.
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B. The example in Tokamak magnetic configuration

For the gyrocenter dynamics in axisymmetric tokamak geometry, we give both the first-

order approximate canonical coordinates and the exact canonical coordinates. Mid-point rule

which is a symplectic method of order 2 is applied to canonicalized gyrocenter equations in

both coordinates.

1. The canonical coordinates

Follow the procedure given in Sec. II, we can get the first-order approximate canonical

transformation and the exact canonical coordinates for the guiding-center equations, so

that we can apply symplectic methods to the canonicalized Hamiltonian system in new

coordinates. In this geometry, there are two useful coordinate systems, the cylindrical

coordinate system (R, ζ, z) and the toroidal coordinate system (r, θ, ζ = −ζ). The magnetic

field is chosen to be

B =
B0r

qR
eθ +

B0R0

R
eζ =

B0r
2

qR
∇θ −B0R0∇ζ, (48)

where B0, R0, q are constant with their usual meaning. The corresponding vector potential

A can be written as

A =
B0r

2

2Rq
eζ − ln(

R

R0

)
R0B0

2
ez +

B0R0z

2R
eR, (49)

and the corresponding magnetic strength B(x) and unit magnetic field b can be expressed

as

B(x) =
B0

qR

√
r2 +R2

0q
2,

b(x) = (
−xz −R0qy

R
√
r2 +R2

0q
2
,
−yz +R0qy

R
√
r2 +R2

0q
2
,

R−R0√
r2 +R2

0q
2
).

(50)

Following the steps in Sec. II, the vector potential is written as

A = −B0r
2

2q
∇ζ −B0R0log(R)∇z +∇(

B0R0z

2
log(RR0)), (51)

where ζ = arctan(x
y
). Setting p10 = −B0R0log(R), q10 = z, p20 = −B0r2

2q
, q20 = ζ, q21 = 0

and solving q11∇p10 − p11∇q10 − p21∇q20 = −b, we obtain the first-order approximate
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canonical coordinates 

p̃1 = −B0R0log(R) + u
R−R0√
r2 +R2

0q
2
,

p̃2 = −B0r
2

2q
− u

qR0R√
r2 +R2

0q
2
,

q̃1 = z − u
Rz

R0R0

√
r2 +R2

0q
2
,

q̃2 = arctan(
x

y
).

(52)

The approximate canonical coordinates is easily obtained without the need to numerical

solving. The canonical coordinates are not unique, another approximate canonical coordi-

nates are 

p̃1 = 2z

√
−B0R0

R0log(R)−R +R0

(R−R0)2

− u
z√

r2 +R2
0q

2

√
− 1

B0R0

(R−R0)2

R0log(R)−R +R0

,

p̃2 = −B0r
2

2q
− u

qR0R√
r2 +R2

0q
2
,

q̃1 = (R−R0)

√
−B0R0

R0log(R)−R +R0

(R−R0)2

− u
(R−R0)

2
√
r2 +R2

0q
2

√
− 1

B0R0

(R−R0)2

R0log(R)−R +R0

,

q̃2 = arctan(
x

y
).

(53)

Following Sec. II, we obtain the exact canonical coordinates

p1 = 2z

√
− u√

r2 +R2
0q

2
−B0R0

R0log(R)−R +R0

(R−R0)2
,

p2 = −B0r
2

2q
− u

qR0R√
r2 +R2

0q
2
,

q1 = (R−R0)

√
− u√

r2 +R2
0q

2
−B0R0

R0log(R)−R +R0

(R−R0)2
,

q2 = arctan(
x

y
).

(54)

The transformation transforms the gyrocenter motion into a canonical Hamiltonian system

Ż = J−1∇H̃(Z).
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2. The numerical results

We first use the non-symplectic implicit Runge-Kutta method of order 3 to simulate the

motion of charged particles, and then apply the mid-point rule to solve the gyrocenter equa-

tions in first-order approximate canonical coordinates and the exact canonical coordinates.

We denote by ACT+S the method of symplectic method applied to guiding-center equations

in first-order approximate canonical coordinates and by ECT+S the method of symplectic

method applied to guiding-center equations in the exact canonical coordinates.

In these numerical examples, the parameters for the model tokamak geometry and simu-

lation particles are normalized by R0 and B0 with safety factor q = 2. Displayed in Fig. (2)

is the comparison of banana orbits calculated by the RK3 method, by the ECT+S method

and by the ACT+S method with the same initial conditions. In these numerical examples,

µ = 2.25 × 10−6 and the initial conditions are X0 = (1.05, 0, 0) and u0 = 0.0004306. In

Fig. 2(a), the orbit by RK3 is not accurate at the long time scale, while the orbits cal-

culated by ECT+S method in Fig. 2(b) and that by 1-order ACT+S method in Fig. 2(c)

are both accurate over long integration time and form closed banana orbits. Displayed

in Fig. (3) is the comparison of a transit orbit calculated by the three methods with the

same initial conditions. In this calculation, µ = 2.448 × 10−6, and the initial conditions

are x0 = (1.05, 0, 0) and u0 = 0.0008117. In Fig. 3(a), the orbit by RK3 is not accurate at

the long time scale, while the orbits calculated by ECT+S in Fig. 3(b) and by ACT+S in

Fig. 3(c) are both accurate over long integration time and forms a closed transit orbits.

The long-term energy by RK3 method gradually decreases without bound. However, for

the symplectic integrator applied to canonical Hamiltonian system either in the approximate

coordinates or in the exact canonical coordinates, the energy error is bounded by a small

number for all time steps. This fact is clearly demonstrated in Fig. 2(d) and Fig. 3(d),

where charged particle’s energy normalized by the initial energy is plotted against time. In

fact, the curve of discrete energy obtained by the mid-point rule in approximate canonical

coordinates overlap the curve got in exact canonical coordinates. The numerical results

clearly show that the symplectic integrator bounds globally the numerical energy error and

maintains the accuracy of the orbit for arbitrarily long simulation time. In these numerical

examples, for each time step of the symplectic method, five Newton iterations are used to

search for the root. Though mid-point rule is of order 2, its numerical results show the
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FIG. 2. (Color online) [Fig. 2(a)] Banana orbit numerically obtained by using the standard RK3

method and [Fig. 2(b)] that obtained by the ECT+S method. Fig. 2(c) is the orbit by the ACT+S

method. The integration time is 250 periods of the closed orbit in the poloidal (azimuthal) plane.

[Fig. 2(d)] Normalized energy H/H0 as a function of time for the three methods, where H0 is the

initial energy. The time-step size is h=100≈ T/400.

superb properties for the guiding-center equation in the new coordinates than that of the

standard RK3 method in long-time simulation. The results displayed in the Fig. (2) and

Fig. (3) therefore provide an appropriate comparison in maintaining the accuracy of the

orbit and in conserving energy.

VI. CONCLUSION

In this paper, we have developed a general procedure to construct canonical coordinates

of the guiding center dynamics in time-independent magnetic fields. A series expansion of
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FIG. 3. (Color online) [Fig. 3(a)] Transit orbit numerically obtained by using the standard RK3

method and [Fig. 3(b)] that obtained by the ECT+S method. Fig. 3(c) is the transit orbit obtained

by the ACT+S method. The integration time is 40 periods of the closed orbit in the poloidal

(azimuthal) plane. [Fig. 3(d)] Normalized energy H/H0 as a function of time for three methods,

where H0 is the initial energy. The time-step size is h=100 ≈ T/300.

the coordinates transformation is obtained recursively, and in numerical simulations we can

use approximate canonical coordinates by truncating high order terms to a certain accuracy,

such as the machine accuracy. We applied symplectic methods to the canonicalized gyro-

center system in the original coordinates associated with the transformation. The examples

in dipole magnetic field and in axisymmetric tokamak magnetic field demonstrated the sig-

nificant advantages of symplectic method applied to the canonicalized system in preserving

energy in long-term integration. The canonization method developed in this paper can be

easily applied in numerical experiments.

The paper focus only on the guiding-center motion in a equilibrium field. For the guiding
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center motion in a time-dependent electromagnetic field, the corresponding Lagrangian will

depend on time explicitly, i.e., L = L(X, Ẋ, u, u̇, t). In this case, the expression of the Euler-

Lagrange equation are unchanged, and the system is still 4-dimensional. But the equations

are time-dependent. We can extend the gyrocenter system to 6-dimensional and investigate

its canonical coordinates in the similar way. The canonical transformation and the numerical

properties in comparison with standard integrators will be investigated in future studies.
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