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ITER is an international project under construction
in France that will demonstrate nuclear fusion at a power
plant-relevant scale. The Toroidal Interferometer and
Polarimeter (TIP) Diagnostic will be used to measure the
plasma electron line density along 5 laser-beam chords.
This line-averaged density measurement will be input to
the ITER feedback-control system. The TIP is considered
the primary diagnostic for these measurements, which are
needed for basic ITER machine control. Therefore, system
reliability & accuracy is a critical element in TIP’s
design.

There are two major challenges to the reliability of
the TIP system. First is the survivability and performance
of in-vessel optics and second is maintaining optical
alignment over long optical paths and large vessel
movements. Both of these issues greatly depend on
minimizing the overall distortion due to neutron &
gamma heating of the Corner Cube Retroreflectors
(CCRs). These are small optical mirrors embedded in five
locations in the vacuum vessel wall, corresponding to
certain plasma tangency radii. During the development of
the design and location of these CCRs, several iterations
of neutronics analyses were performed to determine and
minimize the total distortion due to nuclear heating of the
CCRs.

I. THE TIP DIAGNOSTIC

The primary goal of ITER’s Toroidal
Interferometer/Polarimeter (TIP) is to measure chord-
averaged electron density along 5 distinct channels in the
plasma. Each channel corresponds with a certain tangency
radius and uses a corner-cube retro-reflector (CCR)
embedded in the vacuum vessel wall to return the signal.
(Fig. 1.) This information will be used for active machine
control and thus reliability and signal consistency are
critical to the successful design of this system.'

Interferometers can provide very precise estimates of
plasma density, provided the environment is stable and
there are negligible signal perturbations. The basic
principle relies on the sampling of two unique optical
paths where one is affected by the plasma. The resulting

different path lengths can be interpreted as a sequence of
light and dark bands, or fringes, by the photo detector.”
However, in a challenging environment such as the one
ITER is expected to experience, issues such as vibrations
which affect signal integrity, vacuum vessel geometry
fluctuations which interfere with the signal path length,
causing “fringe skips”, and temperature gradients in the
CCRs which cause signal misalignment during
operations.
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TIP Beam Array
Fig. 1. TIP Beam Array with Channels (Ref. 1)

To remedy the vibration issue, the laser
interferometry system uses two lasers of different colors
per signal and compares between the two beams (a two-
color system, 10.6 and 5.3 wm). The fluctuation in the
geometry of the vacuum vessel size is compensated by
using the polarimetry system as a coarse estimate, which
reduces fringe skip error. However, signal loss due to
temperature gradients in the CCRs from nuclear and
radiant heating cannot be fully corrected during operation,
and the CCRs must be analyzed to ensure they function in
the ITER environment.

I.A. The Corner Cube Retroreflector
LA.1. CCR Design

The Corner Cube Retroreflectors are made of three
120-degree segments, semi-kinematically bolted together,
and mounted to the vacuum vessel via a central bolt and
Belleville washer system. (Fig. 2.) The design allows the
CCRs to be cooled via conduction to the surfaces to
which they are attached.
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1.A.2. CCR Materials

Material selection for the CCRs is an important
consideration. Materials must be vacuum compatible,
approved by the ITER organization for in-vessel use, and
must have a low o/k ratio to minimize the thermal
deformation in the parts. Of the few materials which meet
these requirements, Copper and Beryllium seem the most
suitable. Cu is a better thermal conductor by far, but has a
higher gamma cross section than Be. Early analyses
showed that, in several locations, up to half of the nuclear
heating in the CCRs is a result of gamma radiation, Be is
the best material for CCRs which lack sufficient gamma
shielding, though Cu will be used when feasible. (Fig. 3)

Fig. 3. Channel 2 location in vacuum vessel wall.

Fig. 5. Channel 4 location in vacuum vessel wall.

1.A.3. Critical CCR Design Requirements

Due to the fact that the TIP diagnostic will be used
for active machine control, it is crucial to preserve signal
integrity. A major contributor to this issue springs from
the thermal distortion in the CCR due to radiant and
nuclear heating. If sufficient mechanical distortion is
achieved, the interferometry signal could be lost
completely. The design of the CCR sees a “mushroom”
effect if thermally loaded, when the lobes of the optic
bloom apart. The distortion limit has been defined by the
ITER organization as A/20, peak-to-valley, where A is the
wavelength of the incident diagnostic beam.>

There are presently two types of thermal loading on
the CCRs: radiant and nuclear. Radiant heating is
attributed mainly to Bremsstrahlung radiation and some
charge-exchange neutral atoms. The CCR depth from the
plasma and the texturing of the walls of the CCR passage
varies the total radiant heat load depending on the CCR,
but a worst-case loading of. 0.5 W/cm? has been assumed
for this analysis.

Nuclear heating in the CCRs, both for neutrons and
gammas, is significantly impacted by how deeply the
CCR is embedded into the vacuum vessel wall and how



much shielding is between the optic and the plasma. This
depth varies widely across all five TIP channels with
Channel 2 being the median depth. It was for this reason
that this paper uses Channel 2 as an example of the
probable nuclear heating loads on the CCR.

II. ANALYSIS & RESULTS

A nuclear heating analysis was performed using
Attila’> with volume source information from the most
current ITER models. This analysis confirmed that, for
Channel 2, approximately half the nuclear heating is due
to gamma radiation. (Fig. 6)
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Fig. 6. Total nuclear heating results (gamma & neutrons)
from Attila (Ref. 3)

These nuclear heating loads were transferred to a
mesh in ANSYS, combined with the radiant heating loads
(0.5 W/cm®), and then applied to a thermo-mechanical
model (Fig. 7) to estimate the total thermal deformation
across the Channel 2 CCR. (Fig. 8)
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Fig. 7. Heating in CCR due to nuclear heating. A 100°C
temperature was applied to the rear of the model. (Ref. 3)
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Fig. 8. Peak-to-valley deformation across face (Ref. 3)

The TIP diagnostic has a requirement that the peak-
to-valley deformation not exceed A/20.> Thus, for the
smaller of the two beams (5.3 pm), we have a working
limit of .26 pm for the thermal deformation. Figure 6
shows that Channel 2 CCR meets this requirement, but
just barely.

I1I. CONCLUSIONS

The combined results from the neutronic and thermo-
mechanic analyses supported the conclusion that the
Channel 2 CCR will meet the requirements for minimum
thermal deformation for the TIP Diagnostic. However,
there are two additional channels (Channels 3 & 4) which
are located at smaller radial positions and have even less
shielding. These initial results for Channel 2 suggest that
the CCRs associated with these other channels might be at
risk of higher than allowable thermal deformation, and
therefore might lose signal during operation. It would be
prudent to apply further analysis to this issue, perhaps
looking into what controls can be applied to the TIP
system to absorb some of the thermal misalignment.
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