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Optimal Shielding Design for Minimum Materials Cost or Mass 

Robert D. Woolley 

Princeton Plasma Physics Laboratory, Princeton University, POB 451, Princeton, NJ 08543 

woolley@pppl.gov 

Abstract 

The mathematical underpinnings of cost optimal radiation shielding designs based on an 

extension of optimal control theory are presented, a heuristic algorithm to iteratively solve the 

resulting optimal design equations is suggested, and computational results for a simple test case 

are discussed.  

A typical radiation shielding design problem can have infinitely many solutions, all 

satisfying the problem's specified set of radiation attenuation requirements.  Each such design 

has its own total materials cost.  For a design to be optimal, no admissible change in its 

deployment of shielding materials can result in a lower cost.  This applies in particular to very 

small changes, which can be restated using the calculus of variations as the Euler-Lagrange 

equations. The associated Hamiltonian function and application of Pontryagin's theorem lead to 

conditions for a shield to be optimal.    

-----------------------------------------------------------------------------------------------------  
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I.  INTRODUCTION  

Materials costs dominate some shielding design problems. This is the case for manned 

nuclear power space applications for which shielding is essential, for example, and the cost of 

launching by rocket from Earth is high. In such situations or in situations where shielding 

volume or mass is constrained, it is important to optimize the design. Although trial-and-error 

synthesis methods may succeed, a more systematic approach is warranted. For other applications 

with lower effective shield materials cost rates, optimal design involves an automated approach 

that may reduce design labor costs. 

Traditional approaches to shielding design focused on achieving adequate attenuation. Early 

in the nuclear age, computer prediction of a shield’s attenuation was expensive and inaccurate, so 

direct measurement was frequently relied on. Attenuation by a pure absorber is easy to 

accurately calculate, but scattering is more complicated. Approximate methods were developed 

such as the use of buildup factors summarizing scattering results of accurate attenuation 

calculations or measurements. Buildup factors allow rough prediction of shield attenuation using 

simplified calculations without detailed consideration of the radiation’s energy spectrum. 

Removal cross sections were another approximation developed for situations in which fast 

neutrons are first scattered while passing through a material slab before entering a thick water 

shield. They allowed the slab’s scattering effects on subsequent water absorption to be modeled 

as an additional pure absorption without detailed consideration of the neutron energy spectrum. 

A 1973 compendium1 detailed the shielding design methods then in use.  Its brief discussion 

of shielding design optimization (on 3 of its 788 pages) reports five approaches of which three 



 

implemented algorithms derived from a variational approach and a fourth implemented a 

gradient nonlinear programming scheme.   

The fifth approach was the ASOP computer code,2 new at that time, which minimized mass 

of spherical shields for a given attenuation requirement through a direct numerical search.  

ASOP evaluated each shield configuration's attenuation by running the newly developed ANISN 

discrete ordinates code,3 then evaluating finite differences between successive ANISN runs using 

slightly varied radial boundaries to guide its next shield redesign iteration, and continuing 

iterations until ASOP's convergence criteria were met.  However, ASOP did not fully automate 

shield design since it required a wise selection of shielding materials sequenced into layers.  

Fifteen years later, shielding optimization techniques had not progressed.  A shielding 

optimization project for satellites documented in a 1988 report4 focused on using the same ASOP 

code to optimize selected combinations of project-selected shielding materials into spherical 

layers.  No fully automated approach to optimization was used.  A 1996 textbook5 on shielding 

continued to ignore optimization while focusing on shield attenuation calculation methods.   

By now, the accuracy of shielding computations has enormously improved with better 

numerical methods, cross section libraries and bench-marked standardized codes, while 

computation costs have enormously decreased.  However, shield optimization methods have not 

evolved.  The present work is therefore intended to spur improvements in shield design methods 

to include shield optimization.  The eventual objective is to fully automate design of optimal 

radiation shielding in any geometric configuration to meet specified attenuation requirements 

given a menu of allowed shielding materials along with their properties and cost densities.  

As developed herein, the cost-optimal design turns out to be the one which, at each point 

location in the shield, chooses a material minimizing a particular functional of forward and 



 

adjoint angular fluxes plus material cost density.  Thus a Boltzmann Transport Equation (BTE) 

forward and adjoint angular flux solver augmented with some additional calculations as 

described herein can evaluate whether a shield design is optimal or if improvements are possible.  

An iterative algorithm based on approximated optimality is proposed to solve for the optimal 

shield design, and numerical experiments with it are discussed.   

I.A.  Optimal Control Theory Background 

The starting point for optimal shielding design is optimal control theory, a field with an 

extensive literature that developed from control theory.  Control theory had emerged within 

electrical engineering during the first half of the last century to regulate continuous processes via 

analog electronics using circuit integrators, amplifiers and sensor feedback.  Controlled 

processes were typically linear time-invariant, so frequency-domain spectral methods from radio 

engineering had ensured that servo loops responded without oscillation. 

Coincident with rocket-powered missile development, control theory expanded to include 

state-space methods.  The state of a system is an ordered set of scalar variables with the property 

that the state at any instant allows prediction of subsequent responses to control inputs or 

disturbances without knowing earlier history.  In continuous-time systems the state variables 

change smoothly without discontinuous jumps in contrast with input control commands which 

may vary arbitrarily. 

As a simple example, the state of a swinging pendulum with applied horizontal control force 

is described by two state variables, angular position and angular rate.  A more difficult example 

considers controlling the internal temperature of an object by heating its boundary, for which the 

precise state of the system at any instant requires representing temperatures at all internal points.  

This need for infinite state data in order to make exact response predictions is typical for 



 

distributed parameter systems described by partial differential equations (PDEs).  For 

engineering purposes such systems are usually represented approximately using a finite number 

of state variables, e.g., modeling internal temperatures at only a finite number of spaced grid 

points. 

In the practical example of a rocket-powered missile during its controlled flight, the state 

variables include its remaining fuel mass and its three components each of position, velocity, 

rotational orientation and angular velocity.  However, these thirteen state variables are joined by 

others modeling internal subsystems controlling, e.g., aerodynamic control fins, a rocket engine 

gimbal and/or a throttle valve. 

In state-space analysis of systems with a finite number of state variables, the system's physics 

are incorporated as a set of first-order ordinary differential equations (ODEs) expressing the time 

rate of change of each state variable as a function of all state and control variables, possibly with 

additional dependencies on time.  It is conventional to refer to a system's n state variables as its 

n-dimensional state vector, x , to its m control variables as the m-dimensional control vector, u , 

and to its n rate-of-change functions as the n-dimensional vector function, f .   Per Eq. (1), the 

time-varying control vector's range is constrained to a specified set, U, whose boundaries if any 

represent inherent technical limits:  

( )   mUtu ℜ⊆∈    . (1) 

The system dynamics are expressed as the following vectorized state equation: 

( ) ( ) ( ) ( )( )   ,, ttutxftxtx
dt
d

=≡ 
. (2) 

Eq. (2) is accompanied by a boundary condition such as the initial state condition: 

( ) 00 xtx =  . (3) 



 

The system's response to a control input is a trajectory through n-dimensional state-space.  

When evaluating possible control strategies starting from a specified initial state, only admissible 

pairs of state and control trajectories ( ) ( )( )tutx ,  satisfying the physical constraints of Eqs. (1) and 

(2) are considered. 

Adoption of state-space analysis methods brought a new emphasis on optimization, e.g., for 

maximizing the altitude or speed reached by a rocket, or for minimizing a rocket's use of fuel or 

energy or time needed to reach a target or nearest approach distance to a missed target.  These 

examples of different quantities to optimize can each be expressed as the sum of a specified 

scalar performance function of the final state reached, ( )( )ff ttx ,ϕ ,  plus an integral over the 

mission time interval of some other specified scalar performance rate function of the path taken, 

( ) ( )( )ttutxL ,, .  Thus, the general optimal control problem is to choose ( )tu  to maximize (or 

minimize) the following scalar performance index functional of the entire histories of the state 

and control functions: 

( ) ( )[ ] ( )( ) ( ) ( )( )dtttutxLttxtutxJ ft

tff ∫+=
0

,,,; ϕ
, (4) 

subject to the state equation Eq. (2) boundary conditions including Eq. (3) and problem-specific 

constraints including Eq. (1). 

To optimize a mission its time interval must be well defined, but it usually begins as in Eq. 

(3) with specified initial time 0t  and state 0x .  However, a wide variety of situations are treated 

for the final time, with the final time itself in some cases specified in advance, in other cases 

determined as the time when specified conditions are reached, and in yet other cases left as a free 

parameter to be optimized.  It turns out that a general framework approach can be taken and the 



 

different boundary condition details of different situations affect only corresponding boundary 

condition details of their optimal solutions.   

The optimal control solution is pursued by affixing Eq. (2) to the Eq. (4) functional's 

integrand using the Lagrange multiplier ( )tλ , an undetermined n-dimensional vector function of 

time, as follows: 

( )( ) ( ) ( )( ) ( ) ( ) ( ){ }[ ]dttxtuxftttutxLttxJ ft

t

T
ff ∫ −++=

0

,,,,, λϕ . (5) 

For any admissible pair ( ) ( )( )tutx ,  satisfying Eqs. (1), (2) and (3), the Lagrange multiplier 

( )tλ  may be chosen arbitrarily since within Eq. (5) it is multiplied by zero.  Eq. (5) is next 

integrated by parts, and the Hamiltonian function is identified in the result: 

( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) dttxttuxftttutxL

txttxtttxJ

ft

t

T

tttutxH

T

T
ff

T
ff

∫


















+++

+−=

0

nHamiltonia
,,,

00

,,,,                       

,      

λλ

λλϕ

λ


  

           . (6) 

Given a particular admissible state and control pair  ( ) ( )( )tutx ,  that satisfies Eqs. (1), (2), and  

(3), optimality of this pair is equivalent to the impossibility of further improving the performance 

functional of Eq. (5) by using any different admissible pair ( ) ( ) ( ) ( )( )tututxtx δδ ++ , , where 

( ) ( )( )tutx δδ ,  represents a combination of variations in state and control histories allowed by 

problem constraints.  For a fixed final time this optimality condition is stated in Eq. (7).  



 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )
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,,,

,,,
                                   

 ,,     

  ;;
where

(b)                                                          optimum minimizing afor         0
(a)                                                         optimum maximizing afor         0
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Since for an optimal control, Eq. (7) holds for all admissible pair variations, it in particular 

holds for variations of small amplitude.  For sufficiently small amplitude variations Eq. (7c) can 

be restated using partial derivatives: 

( ) ( )[ ] ( ) ( ) dttu
u
Htx

x
Hxttx

x
J f

tt

f

t

t

TT

tt

T ∫ 







∂
∂

+







+

∂
∂

++















−

∂
∂

=
=

=
00

δδλδλδλϕδ  . (8) 

However, ( )txδ  and ( )tuδ  are not independent since they are related through the Eq. (2) 

constraints.  It would be tedious to disentangle their mutual dependencies so instead one simply 

chooses the arbitrary Lagrange multiplier vector ( )tλ  to make the Eq. (8)  ( )txδ  terms vanish.  

Within the integrand this leads to the Eq. (9) vector differential equation for the Lagrange 

multiplier variables, which are sometimes alternatively called influence, auxiliary, 

complementary or co-state variables. 

 
x
f

x
L

x
H TT

∂
∂

−
∂
∂

−=
∂
∂

−= λλ
 (9) 

If the initial system state is fully specified as in Eq. (3) making ( ) 00 =txδ , then the second 

term of Eq. (8) vanishes regardless of  ( )0tλ .  If the final state is not specified thus making 



 

( ) 0≠ftxδ , then in order for the first term of Eq. (8) to vanish its coefficient must equal zero 

implying the Eq. (10) final condition for Eq. (9): 

( )
ft

T

f x
t 








∂
∂

=
ϕλ

. (10) 

Alternatively, if the final state is specified as in Eq. (11), 

( ) ff xtx =  , (11) 

so that ( ) 0=ftxδ , then there is no specified boundary condition for Eq. (9), but Eq. (1) has all 

state variables specified at both initial and final times.  Either way, the first three terms of Eq. (8) 

are zero, leaving only the fourth term:   

dtu
u
HJ ft

t∫ 







∂
∂

=
0

δδ
.  (12) 

In cases where the control is unconstrained, the control variations ( )tuδ  can be either positive 

or negative so if 0≠Jδ , then it becomes impossible to ensure either Eq. (7a) or (7b).  This 

implies when considering small amplitude variations for either maximizing or minimizing 

unconstrained control situations, 0=Jδ .  Thus, the optimal solution with unconstrained control 

is found by setting 0 =
∂
∂

u
H , solving the resulting algebraic equations for ( )tu  in terms of ( )tx  

and ( )tλ , and then numerically solving the system of these relations in conjunction with Eqs. (2), 

(3), (9) and the final boundary condition, which is either Eq. (10) if the final state is unspecified 

or Eq. (11) if the final state is specified.  

If instead, the control is constrained by Eq. (1), then admissible control variations must be 

restricted so that ( ) ( ) Ututu ∈+δ , which complicates analysis by making uδ  depend on u  



 

through a set of inequalities.  These can be worked through, and a solution can be found for a 

control optimal with respect to small variations. 

However, the Pontryagin's Maximum Principle (PMP) theorem may instead be applied for 

either constrained or unconstrained situations, choosing u  consistent with Eq. (1) to pointwise 

maximize (or minimize) H to find the optimal solution. Where it applies, the PMP is more 

powerful since it optimizes over both small and large control variations.  Either way, determining 

the optimal control requires simultaneous solution of the two vector differential equations, Eqs. 

(2) and (9), coupled through algebraic equations derived from 0 =
∂
∂

u
H  or from the PMP and 

with split boundary conditions given by Eq. (3) at the initial time and by either Eq. (10) or Eq. 

(11) at the final time.  

Russian mathematician Pontryagin together with his students derived the maximum (or 

minimum) principle in 1956, expanding it into a 1961 book subsequently translated into 

English.6,7   The PMP supposes that an admissible control history ( )tuopt  obeying Eq. (1), along 

with its associated state history ( )txopt  satisfying Eq. (2) with boundary condition Eq. (3), is 

known to be optimal in maximizing (or minimizing) Eq. (4), i.e., that Eq. (7) is known to hold 

for all admissible variation pairs.  The PMP states that then a nonzero vector function, ( )toptλ , 

satisfying Eq. (9), exists with the property that separately at each time point, the optimal control 

( )tuopt  necessarily maximizes (or minimizes) pointwise the Hamiltonian H function with respect 

to all other possible values of the control at that same time point.  Stated mathematically, then 

( )toptλ , satisfying Eq. (9), exists with the property that: 



 

( ) ( ) [ ]

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( ) ( )( )( ) (b)    ,,,min,,*,
:control optimal minimizing afor 

(a)    ,,,max,,*,
:control optimal maximizing afor 
    where,   *

 

 

0

tttxHttttxH

tttxHttttxH

tttUttu

optoptUoptopt

optoptUoptopt

fopt

λυλυ

λυλυ

υ

υ

υ

∈

∈

=

=

∈∀∈=

. (13) 

Pontryagin's proof for general finite-dimensional nonlinear dynamic systems was only for 

necessary conditions.  If a control optimizing Eq. (4) exists, then it necessarily must satisfy Eqs. 

(1), (2), (3), (9) and (13).  Pontryagin did not prove the converse that merely satisfying Eqs. (1), 

(2), (3), (9) and (13) with appropriate final boundary condition Eq. (10) or Eq. (11) would be 

sufficient to conclude that a control ( )tu  optimizes Eq. (4).    

On the other hand, from a practical engineering perspective, any control solution satisfying 

Eqs. (1), (2), (3), (9), and (13) with appropriate final boundary condition Eq. (10) or Eq. (11) 

may be of interest even in cases without PMP sufficiency.  Such a solution satisfies all mission 

requirements, and small admissible variations cannot improve on its performance.  Concerns 

about PMP sufficiency arise because in some degenerate situations there may not be any optimal 

control solution (e.g., there is no smallest positive number) and in other situations there may be 

multiple control histories that are locally optimal.  Pontryagin's book discusses sufficiency in its 

Chap. 1, Sec. 4, advancing an argument that optimal solutions are topologically isolated (which 

almost proves sufficiency) and that if it can be demonstrated by other means that an optimal 

control exists, then the optimal control must be among the solutions of Eqs. (1), (2), (3), (9), (13) 

and either (10) or (11).  If also the solutions to this system can be proven to be unique, then PMP 

sufficiency follows.  Pontryagin's Chap. 4 discusses minimum-time optimal control of linear 

systems, a special class for which existence and uniqueness theorem proofs are presented. 



 

After Pontryagin's book appeared, further progress was made by others on sufficiency as 

summarized in a 1977 paper,8 which also further extended sufficiency theorem proofs to 

situations including state variable constraints.  It recounted that a 1966 paper9 had proven that 

PMP sufficiency follows for any Hamiltonian function that is concave in both control and state 

variables for a maximization case or convex for minimization.  Since concavity and convexity 

each include linearity, the PMP is necessary and sufficient in a wide variety of cases.  A more 

general result in 1968 established that concavity (or convexity) with respect to the control 

variables is not essential, showing that if the Hamiltonian function is first optimized over the 

admissible control set U, then PMP sufficiency follows if the resulting optimized function is 

concave (convex) with respect to state variables only.10   Much of optimal control theory for 

finite dimensional systems has been incorporated in accessible textbooks.11 

II.  OPTIMAL SHIELD DESIGN 

Behaviors of shields are governed by the physics of radiation transport.  For neutral particles 

such as neutrons or gamma rays, these are simplified by the fact that particle paths between 

interactions with atomic nuclei are straight lines unaffected by electromagnetic fields.  

Conservation of particles implies that the net particle addition rate matches the rate of change in 

local particle density N ,  but the convective derivative  Nv
t
N

Dt
DN

∇•+
∂
∂

≡


 where v   is 

particle velocity must be used to express conservation in a stationary frame.  It is customary to 

express particle velocity as the product of speed and a direction-of-motion unit vector,  Ω≡ ˆvv , 

to replace particle density by angular flux, the product of particle speed and density,  vN≡ψ , 

and to use particle energy  E  as an independent variable instead of particle speed which then 



 

depends on energy and particle rest mass m   as   2

22 2
mcE

EmcEcv
+
+

= , where c   is the speed of 

light.  With these customary variables, conservation is expressed by the time-dependent BTE as 

follows: 

( ) ( ) ( ) ( ) ( )









=








+




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


+









Ω=Ω+Ω∇•Ω+Ω
∂
∂

Rate Addition
 Source Total

Reactionsby 
 Rate Removal Total

  
Convection

-Out of Rate
  

Increase
 of Rate

,,ˆ,,,ˆ,,,,ˆ,ˆ,,ˆ,1 tErqtErErtErtEr
tv tt

 ψσψψ

 .(14) 

In Eq. (14), the angular flux distribution's single scalar variable, ψ , is modeled as being 

dependent on seven independent scalar variables represented by position  r , particle direction  

Ω̂ , particle energy  E , and time,  t .  The macroscopic total cross section  tσ   for all reactions 

removing particles from a particular energy and direction depends on incident particle energy 

and also varies with position if shield material composition is nonuniform.   

It should be noted that the ψ∇•Ω̂  term in Eq. (14) is simply the directional derivative of  ψ  

in the Ω̂  direction and that no other terms explicitly refer to other directions, even via 

differential or integral operators.  Therefore, if its right hand side were fully known then one 

could express the exact angular flux solution to Eq. (14) in closed analytical form by integrating 

along lines, a fact forming the basis for integral transport methods12 and also related to Monte 

Carlo solution methods.  However, in most situations the right hand side's total source also 

depends on the angular flux function to be determined.  The total particle source addition rate  tq   

can be decomposed into the sum of source contributions from any external fixed source 

specified, the inherent inscattering source, and any other flux-dependent source types present that 

for gamma rays would include photons released by radiative neutron captures or for neutrons 

would include fission sources.   Thus, for neutrons, 
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. (15) 

The scattering source term introduces complexity in that it involves integration over energy 

of the incident particles being scattered, and over the deflection angle between incoming and 

outgoing directions in a formula which requires use of double-differential cross sections: 

( ) ( ) ( )tErEEdEdtErq ss ,,ˆ,ˆˆ,,,ˆ, ′Ω′≡Ω•Ω′→′Ω′′=Ω ∫ ∫∫
 ψµσ

.  (16) 

Although radiation transport physics is fundamentally described as the time-dependent 

solution of Eq. (14), the transient angular flux response to a suddenly applied radiation source 

step function of time typically varies on a nano-second time scale and reaches a steady-state 

condition in much less than a second.  Details of such fast time responses are not of interest to 

shield designers concerned with steady behavior.  After the brief initial transient, the time 

derivative term in Eq. (14) becomes insignificant so it is omitted altogether in the time-

independent version of the BTE normally used to represent shielding physics: 

( ) ( ) ( )
( ) ( ) ( )ErqErEEdEd

ErErEr

s

t

,ˆ,,ˆ,ˆˆ,    

,ˆ,,,ˆ,ˆ

Ω+′Ω′≡Ω•Ω′→′Ω′′

=Ω+Ω∇•Ω

∫ ∫∫




ψµσ

ψσψ
.    ,  (17) 

where the retained ( )Erq ,ˆ,Ω  term represents any particle sources present in addition to 

inscattering. 

Shielding optimization herein applies an approach similar to optimal control theory but 

different in that the independent scalar variable t (time) of optimal control theory is replaced by 

six independent scalar variables: ( )Er ,ˆ,Ω  representing position, particle direction and particle 



 

energy;  the control vector ( ) mtu ℜ∈  is replaced by the shield design ( ) mru ℜ∈
 ; and the state 

vector ( ) ntx ℜ∈ is replaced by the angular flux function ( ) +ℜ∈Ω Er ,ˆ,ψ .  System dynamics is 

replaced by Eq. (17), the time-independent BTE, which is a linear first order PDE also including 

linear integral terms for scattering.   

Shielding design problem specifications include a radiation source description, a definition of 

the "detector" regions in which radiation dose rates must be limited along with their limiting 

dose rate values, and a definition of which shielding materials are allowed and where.   

II.A.  Shielding Definitions and Notation  

As shown in Fig. 1, the convex spatial domain 3ℜ⊂D  surrounded by vacuum contains a 

radiation source and subregions DD ⊂α  indexed by Α∈α  in which the dose rate must be 

limited.  The scalar function ( )Erq ,ˆ,Ω  specifies the radiation source distribution per unit solid 

angle and energy at location r and particle energy E.   

Table I is an example of the specified menu of allowed shielding materials which may be 

used in a particular shielding design problem.  With this menu represented as a sequenced list of 

m allowable materials, the volume fraction in the shield of material number i, Ii∈ , where I is 

the m-component material index set, is the scalar function of position, ( )rui
 .  A complete design 

of a shield is thus given by specifying all m of these volume fraction scalar functions of position, 

or equivalently, by the single m-vector function of position: 

 ( ) ( ) ( ) ( )( )Tm rurururu  ...21≡ .    (18) 

 

 



 

 

Fig.1:  Shielding Problem Diagram 

 

TABLE I 

An Example of a Materials Menu 

 



 

Volume fractions are by definition constrained as   and also by 

.  This is stated succinctly as , where  is the set equivalent to those 

definitional constraints.  For example, this set can be visualized for m=3 by Fig. 2. 

 

Fig. 2:  Control Constraint Set U for m=3 

In practical shielding design situations, there may be other position-dependent constraints 

further restricting the materials choices in portions of the spatial domain, here stated as follows: 

 , (19)  

where,  is the specified position-dependent set of material choice options under the control 

of the shielding designer.    

Total materials cost C is modeled in terms of volumetric cost rates  assigned for each 

material .  Defining the materials cost vector as , the total materials 

cost is  

. (20) 



 

Scattering and total cross sections are also vectorized as  

( ) ( )( ) ( )( ) ( )( )( )Tm
tttt EEEE σσσσ ...21≡  . (21) 

 

and    
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The BTE for angular flux, ( )Er ,ˆ,Ωψ , is then written in vectorized form as: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) (b)                                                                  for    
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,ˆ,,ˆ,ˆ

0

UrUrur

ErqErruEEEdd

ErruEEr

c

T
s

T
t

⊂∈∈

Ω+′Ω′→′Ω→Ω′′Ω′

=Ω+Ω∇•Ω

∫∫∫
∞







,D

ψσ

ψσψ

  

 , (23) 

with boundary condition  

( ) 0,ˆ,
0ˆˆ

=Ω
<Ω•
∂∈

n
DrEr 

ψ
 , (24) 

where n̂  is the outer-directed unit normal on the domain boundary D∂ .  Eqs. (21) through (24) 

can describe neutron or gamma ray transport which also may be combined by redefining E as a 

two-element vector.  The dose rates Dα, within regions Dα, are the response of an 

omnidirectional detector separable in energy and position.  Its energy weighting function w(E) 

takes into account tissue absorption and quality factors.  Its position weighting function, ( )rW 
α , 

is normalized as  

( ) 1=∫∫∫
α

α
D

dVrW 

.   (25) 



 

Then the dose rates are: 

( ) ( ) ( )ErEwrWdEddVD ,ˆ,
0

ΩΩ= ∫∫ ∫∫∫∫
∞

 ψαα

αD . (26) 

Radiation dose rate constraints required of the shielding design are: 

ADD MAX ∈∀≤ ααα  , (27) 

where MAXDα values are specified requirements. 

 

II.B.  Optimal Shield Design Problem Statement 

The shield cost optimization design problem is to choose ( ) ( )rUru c


∈   in accordance with 

the Eq. (19) constraint so that the functional C in Eq. (20) is minimized while Eqs. (23), (24), 

(26) and (27) are satisfied. 

 

II.C.  Derivation of Shield Optimality Conditions 

Eq. (20) is first augmented by adding two zero value terms: 
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The first added term includes Kuhn-Tucker (KT) multipliers ατ  having the following definition: 

 
0  if  0
0  if  0





=−≥
<−=

MAX

MAX

DD
DD

αα

αα
ατ

. (29) 



 

In nonlinear optimization theory, the KT theorem13 (1951) defines corner conditions for 

inequality constraints. It considers maximization of a continuously differentiable scalar objective 

function of n variables  ( )xh   [or of ( )xh−  for minimization] within a region defined as the set 

intersection of m inequalities ( ){ } mxg =
=≤ α

αα 10 , where the αg   constraint functions are also 

continuously differentiable.  The theorem asserts that ( ) ( ) ( ) 0
*1

=







−∇

=

=

=
∑

xx

m

xgxxh
α

α
αατ   holds at 

any local maximum point *x ,  where the undetermined nonnegative KT multiplier functions  

( )xατ  are defined such that they form identically zero products when multiplied by their 

associated constraint functions, i.e., ( ) 0≥xατ  and ( ) ( ) 0=xgx αατ .  Interpreting the KT theorem, 

for interior points where ( ) αα ∀> 0xg , the KT theorem returns the familiar result that all first 

derivatives are zero at a maximum.  On single active constraint portions of the region's boundary 

[where only one ( )xgα  constraint function is zero], the KT theorem states that the objective 

function's gradient direction at a maximum point exactly matches the active constraint function's 

gradient direction there.  At corner points of the region boundary where two or more constraints 

are active, the KT theorem states that the gradient direction of the objective function lies within 

the set of directions that can be formed as weighted sums of the gradients of the active constraint 

functions using nonnegative weighting coefficients.  The KT theorem provides only necessary 

conditions for an optimum, but they become sufficient conditions also if the objective function is 

concave and the constraint functions are all convex. 

Use here of KT multipliers is to multiply functions which are not known in advance but 

instead result from solving PDEs.  Otherwise their use is conventional.  It should be noted that 

Eqs.  (27) and (29) together guarantee that the first added term in Eq. (28) is identically zero.  



 

The second added term, including the Lagrange multiplier function ( )Er ,ˆ,Ω≡
λλ , is identically 

zero because of Eq. (23).   It is useful to define a Hamiltonian function via Eq. (30): 

 

( )

( )
( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

)

,ˆ,

,ˆ,

,ˆ,,ˆˆ

,ˆ,

,ˆ,

(
00































Ω+





















Ω+

















′Ω′→′Ω→Ω′′Ω′

+Ω−

×Ω

Ω+=

∑

∫∫∫∫∫∫

∈

∞∞

A

T
s

T
t

T

ErEwrW

Erq

ru
ErEEEdd

ErE

Er

dEdrucH

α
αα ψτ

ψσ

ψσ

λ














. (30) 

The next step swaps the dummy integration variables for scattering and chooses the arbitrary 

Lagrange multipliers to simplify Eq. (30), as follows:  

( ) ( )∑
∈

Ω≡Ω
A

ErEr
α

ααψτλ ,ˆ,,ˆ, * 

, (31) 

where the *
αψ functions are chosen to satisfy normalized adjoint flux equations for each detector 

region, dependent only on the design, ( )ru  , i.e.,  
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, (32) 

with boundary conditions: 

( ) 0ˆˆ,0,ˆ,* >Ω•∂∈=Ω n,DrEr 
αψ . (33) 

The Eq. (30) integral is then integrated by parts in three dimensions using Greens Theorem.  

The surface terms vanish because of Eq. (24) and the Eq. (33) choice.  Because of Eqs. (31) and 

(32), Eq. (30) is simplified to the following: 
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Eq. (34) could be written more compactly by defining a discriminant vector function of 

position which also depends on the entire flux and adjoint flux functions, as follow: 
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The PMP is next invoked as a minimum principle.  For the present shielding design case the 

PMP states that the condition for optimality of a particular design, ( )ru  , is that its choice of u  at 

each point D∈r  optimizes the Hamiltonian H  at that point with respect to all other admissible 

choices of ( )rUu c


∈  at that point, using the optimal design's own angular flux and normalized 

adjoint angular flux functions to evaluate H.  Thus, the optimality condition is as follows: 
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In summary, the optimal shield design is the simultaneous solution to Eqs. (23), (24), (26), 

(27), (29), (32), (33), (35) and (36).  For convenience, the optimal design equations are collected 

in Fig. 3. 



 

 

(1) Forward Boltzmann Transport Equation System 
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(2) Dose rate Constraints and Evaluations, one for each dose rate constraint location: 

( ) ( ) ( )ErEwrWdEddVD ,ˆ,
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αD  (26) 

ADD MAX ∈∀≤ ααα  
 (27) 

(3) Kuhn-Tucker Multiplier Constraints, one for each dose rate constraint location: 
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(4) Normalized Component Adjoint Boltzmann Transport Equation Systems,  
one for each dose rate constraint location: 
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(5) Vector Discriminant Functions, one for each dose rate constraint location: 
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 (35) 

(6) Pontryagin's Optimality Condition: 
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Fig. 3:  Summary of the Optimal Shield Design Equations 



 

Pontryagin's Maximum Principle Applicability 

Although generation of a proof is beyond the scope of this paper, it is appropriate to discuss 

why the PMP, originally proven for systems governed by any finite number of ODEs in the 

single independent time variable, t, should be relied on to optimize the time-independent BTE 

system with its six independent scalar variables ( )Er ,ˆ,Ω .  The main issue for PMP application to 

the BTE is the extension from finite to infinite dimensional systems. 

First, it should be noted that proving PMP applicability may not be crucial since shield 

designs can be evaluated on their own merits. 

An intuitive PMP applicability argument starts with the time-dependent BTE, Eq. (14) in 

seven independent variables.  This can be approximated by representing time-varying angular 

flux values on a discrete grid meshing the six independent scalar variables of spatial position 

within the domain, particle energy and particle direction, as in discrete ordinates methods.  

Differential operations with respect to position, energy and direction are replaced by finite 

difference or finite element approximations, and integrals are replaced by weighted sums.  Time 

derivatives of the n<∞ approximating angular flux nodal values are then expressed in terms of 

angular flux nodal values and shielding cross sections on the spatial subgrid, thus replacing Eq. 

(14) for angular flux by a finite system of time-dependent ODEs for angular flux.  It follows that 

the PMP applies to any such approximation.  Well known finite difference14 and finite element15 

proofs show that, for linear operators as in the BTE and even for nonlinear systems with smooth 

solutions, the approximation error of such finite grid models under certain restrictions converges 

to zero as the grids are refined to arbitrarily finer resolutions.  Since the PMP holds for all such 



 

approximations, it is plausible that it also holds for the BTE itself in the limit of zero 

approximation error.  

After Pontryagin's book appeared, there was an explosion of mathematical interest in 

extending the PMP proof, which a recent paper16 traces to 1961, citing early publications proving 

the PMP for special classes of infinite dimensional problems.  However, PDE systems in optimal 

control problems are more diverse than ODE systems so even their taxonomic classification is 

significant.  This area has by now generated a rich literature of its own, including many technical 

papers and even books filled with mathematical proofs for different classes of cases.  It turns out 

that the PMP holds in many PDE cases, but there are other cases in which it does not hold.  

Theoretical investigations are continuing and the body of abstract literature continues to expand. 

A 1968 seminal volume by Lions translated from French in 1971 (Ref. 17) focused on 

optimal control of second or higher order elliptic, parabolic or hyperbolic PDEs.  The framing of 

these problems established terminology and methods of proof including, e.g., distinguishing 

between boundary control and what it called distributed control where the control is applied to 

the domain region's interior (as with optimal shielding design).  A 1995 book18 summarized 

much of the growing field's results.  Results for optimal control of second-order PDEs have been 

extended19,20  and so can be applied with confidence in engineering situations. 

Another division in optimally controlled PDE problems is between evolution type problems 

in which one of several independent variables plays a distinctive time-like role, and Dieudonné-

Rashevsky (DR) type problems in which the independent variables all have an equal rank and in 

which all derivatives are of first order.21  The DR-type problems are of interest here because of 

their similarities to the time-independent BTE.  In 1969 a proof of the PMP for DR-type 

problems in general was published.22  However, it was later noticed that this proof had failed to 



 

address some possible degenerate situations by simply assuming the existence of smooth 

solutions to a related Hamilton-Jacobi inequality in the neighborhood of an optimal control, 

which might be violated in certain DR-type systems.  This gap was subsequently closed by 

reformulating the PMP as a so-called e-maximum principle.23  The e-maximum principle was 

later shown to be automatically implied by augmenting the PMP with some regularity 

restrictions such as requiring the infinite dimensional state functions to obey a Lipschitz 

smoothness regularity constraint24 or by requiring polyconvexity of the Hamiltonian.25 

On the other hand, PMP proofs for DR-type systems do not exactly fit time-independent BTE 

systems whose first-order derivative terms are only with respect to the three spatial variables, 

while an integration operator acts with respect to the energy and direction variables.  However, 

although the BTE's integrodifferential operator is not just a PDE, it is entirely linear, a fact which 

might provide a better basis for a BTE PMP proof.  In 2010 Popescu26 provided a general PMP 

proof for optimal control of time-evolution systems governed by general linear operators acting 

on Hilbert spaces representing both an infinite-dimensional state and an infinite-dimensional 

control.  It included existence and uniqueness thus establishing sufficiency in addition to 

necessity. The proof's scope includes linear integrodifferential operators, but it may require some 

modification to precisely cover optimal design of shielding as governed by the time-independent 

BTE.   

It should be mentioned that even if PMP sufficiency abstractly holds for optimal shielding 

design, computed designs may not be unique since practical numerical computations using 

floating point numbers will be insensitive to sufficiently small grain sizes in shielding mixtures.  

Thus, if uniqueness is essential to an algorithm, it may be necessary to impose a regularity 

restriction on ( )ru  , although no such restrictions are used herein. 



 

There are recent publications27,28 applying optimal control methods with the BTE, albeit for 

an optimal boundary control application somewhat different from design of optimal radiation 

shielding. 

In summary, producing a rigorous proof that the PMP holds for the BTE is beyond the scope 

of this paper, so the present optimal shielding design algorithm exploration proceeds based on 

the plausible belief that it applies.   

II.D.  Discussion of Optimality Conditions 

Since the total cross sections include scattering, the components of discriminant vector 

functions  ( )ψψαα ,; *rd  as defined by Eq. (35) are nonpositive.  Costs listed in the c  vector are 

nonnegative as are the KT multipliers ατ .  Therefore, components of 

 
( ) ( )ψψτ αα

α
α ,; *rcrb

A


d∑

∈

+≡
    (37) 

may be negative or positive at different locations.  At locations where all m components of ( )rb   

are nonnegative, the optimal shield design minimizes ( ) ( )rurbT   by setting ( )  0=ruopt
  if 





∈ rcU  0  

allows a void to be used there as the shielding material.  In other locations where one or more 

components of ( )rb   are negative, the index of the most negative component specifies the optimal 

material choice.  There can also be equally negative components of ( )rb   for which auction ties 

between different materials can be awarded arbitrarily within the Eq. (19) constraint.   

Increasing the positive value of a KT multiplier ατ  cannot increase but may decrease the 

components of ( )rb   through Eq. (37), so the region in which some components of ( )rb   are 

negative can be expanded.  This has the effect through Eq. (35) of adding shielding material at 

the expense of void regions, tending to reduce dose rates αD .  Thus, there is a continuous 



 

relation between ατ  and αD . The existence of this relation is fundamental to the optimal design 

algorithms discussed in the following.  However, Eq. (29) does not allow positive ατ  values 

unless corresponding dose rates equal their maximum limits.  Thus, optimal design solutions 

include precise ατ values.  Since Eq. (29) requires the corresponding ατ  to be zero for each dose 

rate strictly less than its maximum limit, it follows that Eq. (35) does not allow inactive 

constraints to influence the optimal design. 

In theory, the optimal shield design equations provide a rigorous way to determine whether a 

particular radiation shield design is optimal.  Using that design's ( )ru  , solve for the angular flux 

and normalized component adjoint functions, calculate dose rates, then check whether 

Pontryagin's optimality condition is everywhere met for some set of KT multipliers conforming 

to dose rate-dependent positivity limitations. However, there is a practical impediment due to the 

extreme sharpness of the dose rate limitations' coupling with the KT multipliers.  If the dose rate 

at any prescribed radiation constraint point is slightly less than the allowable dose rate there, 

even 10-100 Gy/yr less, then Eq. (29) requires the associated KT multiplier to be zero.  The only 

permitted way for a particular multiplier to be positive is for the radiation at that location to 

precisely match the allowable dose rate there.  On the other hand, if the radiation dose at that 

location is slightly greater than allowable, even 10-100 Gy/yr more, then that entire solution must 

be discarded as inadmissible since it violates the inequality in Eq. (27).  Such sharp precision is 

not compatible with computer calculations using floating point numbers, so a modified approach 

is necessary.  

 



 

III.  OPTIMAL DESIGN ALGORITHM 

Unfortunately Pontryagin's principle does not provide any algorithm to directly find the 

optimum design.  A difficulty is that the logic is circular. To find the optimal shield design, 

( )ruopt
  via Eq. (35), one must first compute ( )

opt
r ψψαα ,; *

d via Eq. (36) for which one needs to 

know optimal angular flux optψ  and adjoint functions, ( )
opt

*
αψ  that, in turn, depend on the 

optimal design, ( )ruopt


.   

The heuristic iterative algorithm investigated here has two nested loops.   The sharpness of 

the coupling between dose rate limitations and KT multipliers is broken by passing fixed KT 

values to the inner loop which does not modify them.  The inner loop ignores the Eq. (27) dose 

rate constraints but solves for an optimal shield design using an internal iteration scheme to 

break the otherwise circular logic concerning optimal flux functions.  The inner loop returns to 

the outer loop with a shield design which is optimal for some set of allowable dose rates 

generally different from those actually specified.  The outer loop then modifies its KT 

parameters before again calling the inner loop in an algorithm eventually converging to the 

specified maximum allowed dose rates.   Thus, the inner loop iteratively modifies ( )ru   to 

converge to an optimal design for some set of αD values, and the outer loop adjusts ατ  values to 

drive the αD towards consistency with MAXDα . 

The inner loop's iteration scheme is based on using old flux functions from its previous 

iteration's shield design.  This would be a good approximation to Eq. (35) if angular flux 

functions changed only slightly between iterations but poor if changes are extensive.  To help 

ensure this approximation is adequate, the inner loop only allows a small part of the shield to be 



 

redesigned in a single iteration.  Shield redesign modifications calculated from Eq. (35) using old 

flux functions are censored by limiting the redesign to a small, carefully chosen subset of the 

domain, DE ⊂k .   

The inner loop is initialized with values for { } A∈αατ  and with an initial shield design [ ] ( )ruk   for 

iteration count k=0. Eqs. (23), (32), and (33) are next solved for angular flux [ ] ( )Erk ,ˆ,Ωψ  and 

normalized adjoint angular flux [ ] ( )Erk ,ˆ,* Ω


αψ  functions, then Eqs. (36) and (37) are evaluated 

using these functions to determine [ ] ( )rbk  .   Then instead of using Eq. (35), the algorithm 

evaluates Eq. (38) to determine the subsequent iteration's shield design: 

( ) ( ) ( )
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then

 min * 

obeys *   where*,

υυ

υυ

υ

. (38) 

The Hamiltonian reduction improvement density between iterations [k] and [k+1] is then 

[ ] ( ) [ ] ( ) ( )( )rvrurb kTk 
−  for locations within the redesign subset DE ⊂k .  To maximize the 

iteration's improvement, an automated method sorts the [ ] ( ) [ ] ( ) ( )( )rvrurb kTk 
−  values over the 

entire domain and then sets a threshold kε  based on the highest percentile of the sorted 

volumetric improvements.  Here, kε  is a positive scalar threshold value for deciding whether 

departures from optimality are severe enough to merit changing material at a location during the 

current redesign iteration.  The domain subset DE ⊂k  is then chosen based on its providing the 

largest projected Hamiltonian reductions, equivalent to the following redesign subset definition: 

[ ] ( ) [ ] ( ) ( )( ){ }k
kTk

k rvrurbr ε≥−∈=
 :DE . (39) 



 

A flow chart of the inner loop appears as Fig. 4.  It is simplified in that it does not show the 

sorting needed to determine DE ⊂k  nor does it show loop termination decisions based on 

recognition of convergence to an optimal design.   

The outer loop appears as Fig. 5.  Its purpose is to find, through iterative search calculations, 

the proper numerical values for the KT parameter set, { } A∈αατ  that result in dose rates,{ } AD ∈αα , 

consistent with the specified dose rate constraint set, { } A
MAXD ∈αα .   The outer loop's scheme is 

based on there being a continuous but unknown functional relationship, f , between the ordered 

set of KT parameters passed to the inner loop, { } A∈αατ , and the resulting ordered set of dose rates 

returned from the inner loop, { } AD ∈αα .    

If the index set denoting dose rate constrained regions A in a shield design specification is 

finite with length n, the A∈α  indices can be relabeled using integer numbers 1 through n then 

combined into n-dimensional vectors as in Eq. (40): 

( )
( ) (b)              ,...,,

(a)                 ,...,,

21

21
T

ny

T
n

DDD

x

=

= τττ

.  (40) 

Then the functional relationship is expressed by Eq. (41): 

( )xfy = . (41) 

In other shield design specifications where the index set is infinite, e.g., representing all 

points on a defined surface or in a defined volume, it may be true that in a particular solution 

only a finite number of points have dose rates equal to their maximum allowed values while the 

infinite number of other locations have dose rates less than their maximum allowed values.  In 

such cases Eqs. (40) and (41) would still apply for the finite number of active variables.  



 

 
 

 

Fig. 4:  Shield Redesign Inner Loop Basic Iteration Scheme 
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Fig. 5:  Shield Redesign Outer Loop Basic Iteration Scheme 
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Although Eq. (41) determining dose rates, y , from KT parameters, x , can be evaluated by 

running the Fig. 4 inner loop algorithm to convergence, what is needed in the outer loop is the 

inverse calculation represented by Eq. (42).   

( )yfx 1−=    (42) 

However, there is no such algorithm to directly evaluate Eq. (42), so it is necessary to instead 

back into its solution using an iterative method.  Various numerical algorithms have been 

developed to iteratively search for and find answers to such "numerical equation solving" 

problems and can be used here.  For single-dimension searches appropriate for spherical shield 

designs, known standard numerical line search methods include bisection, Newton's method, 

various secant or chord methods, fixed-point Picard iteration schemes, and repetitive spline fits 

to previously acquired data that eventually learn the function's shape.  Multidimensional searches 

can be performed using either sequences of one-dimensional line searches in successively 

different directions accomplished through any of these listed methods and connected together 

through Gauss-Jacobi or Gauss-Seidel iteration updates or, alternatively through 

multidimensional versions of either Newton's method, Picard iteration, Broyden's method, 

Powell's hybrid method or various homotopy continuation methods.  



 

 

IV.  HEURISTIC ALGORITHM RESULTS 

The optimal design algorithms were experimentally implemented for the spherically 

symmetric case in the SCALE (Standardized Computer Analyses for Licensing Evaluation) 

software system version 5.0 (Ref. 29) in a custom FORTRAN code module created by modifying 

SCALE's previously existing SAS1X control sequence to include them.  As stated in the abstract 

of the SCALE Version 5 manual, "Since the initial release of SCALE in 1980, the code system 

has been widely used for evaluation of nuclear fuel facility and package designs."  By now, the 

SCALE system has been extensively benchmarked and has become well established with an 

extensive group of users.  The SCALE system includes a variety of functional module codes 

performing fission criticality, transmutation, radiation propagation, and shielding calculations.  

SCALE has multiple master cross section libraries, including the coupled neutron/gamma 

libraries used in the present investigation and it has special functional modules such as BONAMI 

and NITAWL for resonance shielding calculations in problem-specific multigroup cross-section 

preparation.  It has material properties libraries along with code modules to prepare material 

information in formats suitable for use by other modules.  It has a library of utility programs.  It 

also has a library of special FORTRAN subroutines available for use by a newly coded software 

module.    SCALE includes a set of control module codes, each of which causes subsets of 

SCALE's functional modules to execute in predefined sequences, while also accomplishing 

associated auxiliary calculations.  SCALE users select any particular sequence by typing its 

name at the start of their prepared input data file.  Some control modules such as SAS1 

implement several selectable sequences. One of them is the SAS1X sequence part, which is 



 

similar to portions of the sequence of calculations needed to design optimal radiation shields.  

The SAS1X module's code was therefore adopted as a starting point.  By adding modifications, it 

was adapted to develop the experimental SAS1XOPT control module used here. This 

implementation accommodates the sum of both neutron and gamma dose rates in optimal shield 

design via SCALE's XSDOSE module, which also calculates dose at points in vacuum distant 

from a shield. Thus, gamma rays released by radiative capture of neutrons are modeled and are 

part of the shield optimization.   

Spherical symmetry reduces the BTE's independent variables from six dimensions to three, 

i.e., the radial position r ; the ordinate µ  which is the cosine of the angle from the radius to a 

surrounding cone of particle directions; and the particle energy E .   Eq. (43) is the BTE as 

simplified by spherical symmetry. 

( )[ ] ( ) ( )[ ] ( ) ( ) ( )ErqErErEr
r

Err
rr

,,,,,,,11,, 2
2

2
2 µµψσµψµ

µ
µψµ

=+−
∂
∂

+
∂
∂    , (43) 

where σ  is the total cross section and q  is the particle source including scattering.  SCALE's 

XSDRN module was the workhorse for numerical experiments in optimal shield design since it 

rapidly solves the spherically symmetric BTE (or its related adjoint BTE) for any design ( )ru , 

using iterative discrete ordinates methods.  Chapter 3 of Ref. 12 derives these methods and Ref. 

29 describes XSDRN's implementation and options.  XSDRN's solution is a three-dimensional 

(3-D) grid of computed gmi ,,ψ angular flux (or adjoint angular flux) values, where i indexes into a 

set of I discrete radial interval midpoints { } Ii
iir
=
=0 , m indexes into a set of M direction ordinates 

{ } Mm
mm
=
=1µ  chosen as roots of the Mth Legendre polynomial, and g indexes into a set of G energy 

groups { } Gg
ggE =

=1
.  The algorithm's inner loop converges on a space-angle subgrid solution for one 

energy group, and an outer loop steps through energy groups.  Gauss-Seidel updates proceed in a 



 

series of radial sweeps sequenced in ascending order by their constant mµ values, and updates 

within each sweep proceed radially in the order closest to particle direction.  The inner iteration 

ends recalculating within-group scattering from the updated angular fluxes in order to update 

particle sources stored between iterations.  Scattering contributions from the converged energy 

group to other groups are updated before the outer loop advances to the next group.  Outer loop 

iterations between energy groups are avoided where upscattering is insignificant.   

It should be noted that in the spherical shield case only a single external location is needed to 

characterize dose rate, so only one KT multiplier is used.  Since this makes the outer loop of Fig. 

5 almost trivial the outer loop was incorporated into the experimental SAS1XOPT code along 

with the inner loop, and a combination of bisection with linear interpolation was used for the 

single-dimension ατ  to MAXDD αα −  search.  No computational experiments were made with 

asymmetric shield designs that would require using several KT multipliers. 

The chosen model problem was the design of spherical shielding for a family of mobile 

fission reactor engines powering manned Mars surface vehicles30 as illustrated in Fig. 6.   

 

Fig. 6:  Shielded Nuclear Reactor Engine with Mars Vehicle 

 

This application is interesting in its own right but also illustrates a situation in which much 

shielding is essential but its delivery cost is high.  Engines developing rated shaft output powers 



 

from 74.6 kW to 7.46 MW [i.e., from 100 to 10,000 horsepower (HP)] were considered which 

would enable Mars surface missions ranging from excursions in pressurized rover vehicles 

lasting for long durations to large scale ground excavation, mining, or deep drilling.  Fission 

reactors would use unmoderated highly enriched uranium in uranium nitride plate fuel elements 

operating at high temperature, similar to the SP100 design.31  An Open Brayton Cycle (OBC) 

implemented in three radial flow compressors and turbine stages would transfer reactor heat in 

lithium-7 coolant through a heat exchanger into compressed Martian air which would then 

expand through turbines extracting work before exiting carrying the waste heat exhaust.  

Adequate efficiencies in the low-pressure stages would be obtained by using large diameters. 

Radiation shielding requirements for all engines considered were chosen to limit the dose 

rate (neutron + gamma) at R=6 meters from the reactor center to 13.75 µGy/hr, i.e., to 0.12 Gy 

per full power Earth-year.  The menu of possible shielding materials was provided to the design 

algorithm, with all costs per unit volume set proportional to material densities.  Summaries of 

minimum-mass design results are given in Tables II and III.   

 
TABLE II 

Shielding Materials Menu Choices in Minimum Mass Designs 
 

Shielding Material 
Used in Minimum 

Mass Designs 
Tungsten Used 
Boron-10 Used 
Beryllium Not used 
Iron Not used 
Polyethylene Plastic Not used 
Lead Not used 
6Lithium Hydride Used 
Uranium-238 Used 
Graphite carbon Not used 
7Lithium Hydride Not used 
Boron-10 Carbide Not used 
Water Not used 

 

 



 

TABLE III 
Algorithm-Designed Minimum-Mass Spherical Shields Limiting R=6 m Dose Rate 

(neutron+gamma) to 13.75 µGy/hr (0.12 Gy/yr) 
Design 
Number 

Shaft 
Power 
(HP) 

Shaft 
Power 
(MW) 

Reactor 
Thermal Power 

(MW) 

Reactor 
+Shield 

Mass (kg) 

Shield Outer 
Radius (m) 

1 100 0.0746 0.310 18,949 1.3314 
2 178 0.1328 0.4958 20,220 1.3351 
3 316 0.2357 0.8217 21,788 1.3444 
4 562 0.4193 1.368 23,676 1.3509 
5 1,000 0.7460 2.291 26,154 1.3562 
6 1,780 1.328 3.931 29,320 1.3615 
7 3,160 2.357 6.879 34,178 1.3677 
8 5,620 4.193 12.136 38,219 1.3759 
9 10,000 7.46 21.274 45,671 1.3843 

 

The optimal shielding design algorithms assigned materials in layers as thin as 0.5 

millimeters, and in some regions different material types alternated to in effect implement 

material mixtures.   

As shown in Table III, spherical shield design #3 is for a 821.7 kWth reactor which would 

power a turbo engine system using Martian air to develop an estimated 225 kW (i.e., 316  HP) of 

mechanical shaft power.  For the purpose of graphical display the integrated thickness of each 

shield material type used appears in Fig. 7 above a stacked bar chart showing the actual layout 

versus radius. 

Because water is expected to be abundant on Mars as near-surface buried ice, the 225 kW 

(i.e., 316 HP) case was rerun with the cost for water as a shielding material reset to $0.01/g, 

while all other material costs were held at $50/g.  The resulting shield design whose material 

compositions are displayed in Fig. 8 uses 4,800 kg of water plus 17,850 kg of other shielding 

materials.  This increases total shield mass by 862 kg, while reducing the mass delivered from 

Earth by 3,938 kg, thus reducing total cost.   
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Fig. 7:  Material Mixes in Mass-Optimized Shield Design 
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Fig. 8:  Material Mixes in Cost-Optimized Shield Design 



 

V.  CONCLUSIONS 

The future use of 3-D Boltzmann solvers will allow extending optimal design results to 

shaped shield in which material is not wasted to maintain unneeded spherical symmetry.  The 

largest cost savings of automated optimal design of shielding is expected to be for applications 

involving nuclear-powered manned space missions where the required shielding attenuation of 

radiation and material delivery costs are both large.  However, less exotic applications such as 

the shielding of radiation facilities on Earth could also benefit from optimal shielding design, and 

automation of the design process may reduce engineering costs. 

VI.  ENDNOTES  

While the author is an employee of Princeton Plasma Physics Laboratory, a National 

Laboratory managed by Princeton University for the Department of Energy, the present work, 

initiated as part of a Master's thesis, was completed without employer involvement.  
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