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Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field

D. E. Ruiz, C. L. Ellison, and I. Y. Dodin
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
(Dated: October 14, 2015)

We report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency
field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that
describes the relativistic time-averaged dynamics of such a particle in a geometrical optics laser
pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided
that radiation damping and pair production are negligible. The model captures the Bargmann-
Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional
ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement
with the BMT spin precession equation is shown numerically. The commonly known theory, in which
ponderomotive effects are incorporated in the particle effective mass, is reproduced as a special case
when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma

interactions in relativistic spin-1/2 plasmas.

I. INTRODUCTION

One key area in the growing field of quantum plas-
madynamics [1, 2], which is motivated by possible ap-
plications in spintronics [3] and quantum computing [4],
is the study of spin effects in otherwise classical plas-
mas [5-10]. Various models have been proposed to marry
spin equations with classical equations of plasma dynam-
ics [11-13]. Of particular interest in this regard is the
regime when particles interact with high-frequency elec-
tromagnetic (EM) radiation. In this regime, it is pos-
sible to introduce a simpler time-averaged description,
in which particles experience effective time-averaged, or
“ponderomotive,” forces [14-16]. It was shown recently
that the inclusion of spin effects yields intriguing cor-
rections to this time-averaged dynamics [17, 18]. How-
ever, current “spin-ponderomotive” theories remain lim-
ited to regimes when (i) the particle de Broglie wave-
length is much less than the radiation wavelength and
(ii) the radiation amplitude is small enough so that it
can be treated as a perturbation. These conditions are
far more restrictive than those of spinless particle theo-
ries, where non-perturbative, relativistic ponderomotive
effects can be accommodated within the effectively mod-
ified particle mass [19-23]. One may wonder then: is it
possible to derive a fully relativistic, and yet transpar-
ent, theory accounting also for the spin dynamics and
the Stern-Gerlach-type spin-orbital coupling?

Excitingly, the answer is yes, and the purpose of this
paper is to propose such a description for the first time.
More specifically, what we report here is a point-particle
ponderomotive model of a Dirac electron [24]. Starting
from the Dirac Lagrangian density, we derive a phase-
space Lagrangian (75) with a canonical Hamiltonian (76)
that describes the relativistic time-averaged dynamics of
such particle in a geometrical optics (GO) laser pulse
propagating in vacuum [25]. The pulse is allowed to
have an arbitrarily large amplitude (as long as radiation
damping and pair production are negligible) and, in case
of nonrelativistic interactions, a wavelength comparable
to the electron de Broglie wavelength. The model cap-

tures the spin dynamics, the spin-orbital coupling, the
conventional ponderomotive forces, and the interaction
with large-scale background fields (if any). Agreement
with the Bargmann-Michel-Telegdi (BMT) spin preces-
sion equation [26] is shown numerically. The aforemen-
tioned “effective-mass” theory for spinless particles [23]
is reproduced as a special case when the spin-orbital cou-
pling is negligible. Also notably, since the point-particle
Lagrangian that we derive has a canonical structure, our
results can be readily used to develop kinetic [27, 2§]
and subsequently fluid models for studying laser-plasma
interactions in relativistic spin-1/2 plasmas.

This work is organized as follows. In Sec. II the ba-
sic notation is defined. In Sec. III the main assump-
tions used throughout the work are presented. To arrive
at the point-particle ponderomotive model, Secs. IV-
VII apply successive approximations and reparameter-
izations to approximate the Dirac Lagrangian density.
Specifically, in Sec. IV we derive a ponderomotive La-
grangian density that captures the average dynamics of
a Dirac particle. In Sec. V we obtain a reduced La-
grangian model that explicitly shows orbital-spin cou-
pling effects. In Sec. VI we deduce a “fluid” Lagrangian
model that describes the particle wave packet dynamics.
In Sec. VII we calculate the point-particle limit of such
“fluid” model. In Sec. VIII the ponderomotive model
is numerically compared to a generalized non-averaged
BMT model. In Sec. IX the main results are summa-
rized.

II. NOTATION

The following notation is used throughout the pa-
per. The symbol “=” denotes definitions, “h.c.” de-
notes “Hermitian conjugate,” and “c.c.” denotes “com-
plex conjugate.” Unless indicated otherwise, we use nat-
ural units so that the speed of light and the Plank con-
stant equal one (¢ = i = 1). The identity N x N ma-
trix is denoted by Iy. The Minkowski metric is adopted
with signature (+,—, —, —). Greek indices span from 0



to 3 and refer to spacetime coordinates z# = (20,x)
with 2% corresponding to the time variable t. Also,

= 0/0z* = (&,V) and d*z = dtd®z. Latin in-
dlces span from 1 to 3 and denote the spatial variables,
ie, x = (2!,2%,2%) and 0; = 6/02*. Summation over
repeated 1ndexes is assumed. In particular, for arbitrary
four-vectors a and b, we have a-b=atb, =a° —a-b
and a2 = a-a. The Feynman slash notation is used:
¢ = ayy*, where v* = (4°,4) are the Dirac matrices
(see below). The average of an arbitary complex-valued
function f(x, ©) with respect to a phase © is denoted by
(f). In Euler-Lagrange equations (ELEs), the notation
“da :” means that the corresponding equation is obtained
by extremizing the action integral with respect to a.

ITII. BASIC FORMALISM

As for any quantum particle or non-dissipative wave
[29], the dynamics of the Dirac electron [24] is governed
by the least action principle A = 0, where A is the
action integral

A= / £dia, (1)
and £ is the Lagrangian density given by [30]
o _ _ N
2= 2 [Pr"(0u¥) — V] - aky — my. (2)
Here ¢ and m are the particle charge and mass, ¥ is a

complex four-component wave function, and 9 = t~% is
its Dirac conjugate. The Dirac matrices v* satisfy

T+t =291, (3)

where g is the Minkowski metric tensor. Hence,
4B + b = 2(a - b)ly, (4)
et = a’l, (5)

for any pair of four-vectors a and b. In this work, the
standard representation of the Dirac matrices is used:

(8 (L)

where o = (04, 0y,0;) are the 2 x 2 Pauli matrices. No-
tice that these matrices satisfy

(") = 7Py#A°. (7)

We consider the interaction of an electron with an EM
field such that the four-vector potential A has the form

A(ex, ©) = Apg(ex) + Aosc(ex, ©). (8)

Here Apg(ex) describes a background field that is slow, as
determined by the small dimensionless parameter € (yet
to be specified). The other part of the vector potential

Acsc(ex,©) = Re [Aosc,c(ex)e"e] , (9)

describes a rapidly oscillating EM wave field, e.g., a. laser
pulse. Here Ay c(ex) is a complex four-vector describing
the laser envelope with a slow spacetime dependence, and
© is a rapid phase. The EM wave frequency is defined
by w(ex) = —0;0, and the wave vector is k(ex) = VO.
Accordingly, k#* = —0"0O = (w,k). We describe Agge
within the geometrical-optics approximation [31] and as-
sume that the interaction takes place in vacuum. Then
k satisfies the vacuum dispersion relation

k? = w? — k% =0, (10)
which can also be expressed as
F¥ = kT4 = 0. (11)

Furthermore, a Lorentz gauge condition is chosen for the
oscillatory field such that

O Agse = (12)
In this work, we neglect radiation damping and assume
W fwe < 1, (13)

where w, = m is the Compton frequency and «’ is the fre-
quency in the electron rest frame. Then, pair production
(and annihilation) can be neglected. We also assume

1 1
€ = max ( |k|£> <1, (14)

where 7 and £ are the characteristic temporal and spa-
tial scales of k, Apg, and Agg,c. Using this ordering and
the Lagrangian density (2), we aim to derive a reduced
Lagrangian density that describes the ponderomotive (©-
averaged) dynamics of an electron accurately enough to
capture the spin-orbital coupling effects to the leading
order in e. As shown in Refs. [32, 33], this requires
that O(e) terms be retained when approximating the La-
grangian density (2). Such reduced Lagrangian density
is derived as follows.

IV. PONDEROMOTIVE MODEL

In this section, we derive a ponderomotive Lagrangian
density for the four-component Dirac wave function.

A. Wave function parameterization

Consider the following representation for the four-
component wave function:

B(x) = e, (15)

Here 6(x) is a fast real phase, and £(ex, ©) is a complex
four-component vector slow compared to §(x). In these
variables, the Lagrangian density (2) is expressed as



= 2 [674(046) — (@uDv¢]
+E(ff — qhosc —mls) &, (16)
where
mh(ex) = p* — AL, (17)
pu(ex) = —0,0. (18)

It is convenient to parameterize £ in terms of the “semi-
classical” Volkov solution {Appendix A) since the latter
becomes the exact solution in the limit of vanishing e.
Specifically, we write

£(ex,0) = Eeiégo. (19)

Here ¢ is a near-constant function with an asymptotic
representation of the form

(e, ©) Z ™, (ex)e™™®. (20)

n=—oo
(so that ¢ — g — const at € — 0), the real phase 0 is
given by
-~ q e
H(EX, @) = n / - Aosc d@l
2

: ’
_ 2(,". . k) / ( osc <Aosc>) do (21)

and has the property (8) = 0, and =
as follows:

is a matrix defined

2(0,0) = La + 55w (22)

Notice also that the Dirac conjugate of £ is given by

£ = (Eefp)ty = e Pptaty® = =5y =10, (23)

where

YOETY0 =40 |1, + ( )Aosc7 2Ok
2( . )AOSC% (24)

Here we used Egs. (3), (7), and (22).

=l +

B. Lagrangian density in the new variables

Inserting Eqgs. (19) and (23) into Eq. (16) leads to
oy, ,_,’r 0 0=t 0 =t .0 A =
@Y EY FEp —pmy ElyEep - —p°E Y 4hosc
_21 —-'52 =23
7 —_ — O AN—
+ 5 [$7°EM Y E(Bu) — ¢ o] —@1°EI (90)=¢
24 =L
i - -
+ 59 @ [7°EN*4#(0,E) — h.c.] o. (25)
=36

Let us explicitly calculate each term in Eq. (2
tuting Egs. (22) and (24) into £4 leads to

5). Substi-

L1 =p7°EN 120
[n4+( s ek 1 |14+ ] ¢

=@ |:¢ T o ( ) (Aosck?L + ‘ﬂ-kAosc)
q
WAOSCK?%AOSC:I 4

= Agsc - k qAosc T
:(pli#_‘_qfﬁosc_l'qﬂ__k ?L_ - k

=+

-k

2 272
q Aosc'k q Aosc
S0 A — 2

ok T 2(m-k) ]tp, (26)

where we used Egs. (4), (5), and (11). Similarly,

Lo =— @mvoEWOEw
—@m [114 + 5 (ﬂ‘ )Aosck] [H4 + o )kAosc:l
—gm []14 30 )(Aosc% + Mosc)}
=—gm (1 + q—A&kk> @, (27)

where we used Eq. (11) to get the third line and Eq. (4)
to get the last line. For L3, one obtains

Lo == ¢ 0=y 0q A oecSep

==Lt q(A kk)] e [h " qgé;i k)] Y

== (‘5 qusc + q_'Aosc kAoSc
L 7wk
q
+4(7r 3 k)2 AosckAosc%Aosc] (]
_ 2¢%Asc - k 2 Azsc
=—p QAosc + cd ¢ Aosc _ o k
L m-k
q Aosc :
2(7T . ) Aosc%AOSC] ». (28)

The terms £4, £5, and L4 in Eq. (25) involve spacetime
derivatives of (6, E, ), which have slow spacetime and
rapid © dependences. For notational convenience, let us
write the derivative operator 0, as follows:

8ﬂf(6xya @) = €dﬂ,f(€:12'/, @) - k”(?@f(ea:", 9)’ (29)

where f is an arbitrary function and d,, indicates a deriva-
tion with respect to the first argument of f. Then, £4



can be written as follows:

#E2(dup) —c.c]
(Oo@)ky]

E(dup) —c.c],  (30)

= 1 [pK(doy) -

4= > C [0y

where in the third line, we used Egs. (11), (22), and (24).
Similarly, substituting Eq. (21) into £5 leads to

Ls = "2 (90)=

= q‘Aoscrlé .l Q%J;“osc 1
o[ g5 woed [+ ]

~ep |1+ Semh ] g 1+ ],

=, qusc m 2Agsc q (AOSC>
= phe [ K 2(7r-k)+ CE k)}

—€p [II4 + %} (46) [114 +

af Aosc
2(m - k)

} ¢. (31)

- L e k)QAoscMosc] —p [ﬂﬁ quscﬂ i )[

Finally, the last term £¢ gives

L6 2@[70“707 (OuE) —h.c]o

ol s

[ e

Substituting Eqgs. (26)-(32) into Eq. (25) leads to

2= [pK(0op)  (God)ke]
where
F= o [0 s Edg) —ce]  (34)
and

qkAost o

2(m - k) 2(m - k)

2 ¥ 2(m

Here we introduced x(ex, ©) = k(ex) - Agsc(ex, ©). From
Egs. (12) and (29), one has k,0o Ak, = ed, AL, so

[S]
. / AP (ex,©') 6, (36)

It is seen then that x = O(e), so G = O(e).

C. Approximate Lagrangian density

The reduced Lagrangian density £ that governs the
time-averaged, or ponderomotive, dynamics can be de-
rived as the time average of £, as usual [34, 35]. In our
case, the time average coincides with the ©-average, so

L£=(£). (37)

Remember that we are interested in calculating £ with
accuracy up to O(e). Using Egs. (11) and (20) and also

L e {[lh N qusck] y [qMosc] s [qusck:l [II4 "

s ]fe @

2(m - k) 2(m - )

the fact that x is shifted in phase from Ay by m/2 [cf.
Eq. (36)], it can be shown that (G) = O(e?). Therefore,
the contribution of G to £ can be neglected. Similarly,
we can also neglect the first term in Eq. (33) since

— 3 (PHop) - (Go7)ke)

= io: ne'2”|$n%¢nzo(62)a (38)

where we substituted the asymptotic expansion (20).
The second term in Eq. (33) gives

< (<A§sc) ) mh} S0>

f+k

o+ O(e%).  (39)




By following similar considerations, we also calculate
(F), namely as follows. Averaging the first term in F
gives

(Poy Ey Oy Ed 0
e
0 _V‘“r (W BE (Aoschr™y k.,Aosc>] 10

i

I
)]

i
i
<o

"
4 K)2 (Aosck (2KkH — fy™) AOSC>] in s

2
q

7+ k“m <Aosc%/ﬂosc>] dupo

= @ol*d, o, (40)

where we used Eqs. (3) and (11). We also introduced the
modified Dirac matrices

:(po

(EX) 7“ + kb ( ) <AosckAosc>
_’Yu + k“ 2 <Aosc 2X Aosck)>
:’Yu - kﬂ_z <AoscApsc> k
. nd <Aosc>
=y el (a1

Gathering the previous results, we obtain the following
reduced Lagrangian density

£= 5 [BT%(8,8) — (0uP)T"9]

q <Aosc>
2(m - k)

where ¢ = . Since only slow spacetime dependences
appear in Eq. (42), we dropped the “ed,” notation for
slow spacetime derivatives and returned to the “9,” no-
tation.

b |f+ B0 —mly | d+ O(e?), (42)

V. REDUCED MODEL

In this section, the Lagrangian density (42) is fur-
ther simplified by considering only positive kinetic en-
ergy particle states. The resulting model describes two-
component wave functions instead of four-component
wave functions, which leads to explicit identification of
the spin-coupling term.

A. Particle and antiparticle states

First let us briefly review the case when e is vanishingly
small so that 9,¢ can be neglected. Then, Eq. (42) can

be approximated as

(<A(2)SC)> —mly ¢ (43)

where ¢, ¢, and 6 can be treated as independent vari-
ables. [The Lagrangian density Lo depends on @ in the
sense that it depends on 7, which is defined through 0,6
(Sec. IV A).] When varying the action with respect to ¢,
the corresponding ELE is

§p:  (X—mls) =0, (44)

Lo6: ¢, 0] = |# -+ K

where
M (ex) = 7 + ak¥ (45)

is a quasi four-momentum [36] and

q* (Alsc)
ﬁ 08C 4
e = ol (46)
The local eigenvalues are obtained by solving

det (X — mly) = 0. (47)

Since the local dispersion relation (47) has the same form
as that of the free-streaming Dirac particle [37], one has

Ad=m-m+¢* (Al) =m?, (48)

where we used Eq. (10). Solving for 70 leads to

70 = —8,0 — qVog = 1/ (V0 — qAng)? +mZg.  (49)
Here meg is the “effective mass” [19-21] given by

— ¢* (Alse) (ex). (50)

Equation (49) is the well known Hamilton-Jacobi equa-
tion that governs the ponderomotive dynamics of a rel-
ativistic spinless particle interacting with an oscillating
EM vacuum field and a slowly varying background EM
field [38—41]. The two roots in Eq. (49) represent solu-
tions for the particle and the antiparticle states.

mgff (ex) =

B. Eigenmode decomposition

Corresponding to the eigenvalues given by Eq. (49),
there exists four orthonormal eigenvectors h, which are
obtained from Eq. (44) and represent the particle and the
antiparticle states. Since hq form a complete basis, one
can write £ = hy¢?, where ¢¢ are scalar functions. Recall
also that pair production is neglected in our model due
to the assumption (13). Let us hence focus on particle
states, merely for clarity, which correspond to positive

kinetic energies
Eeff = w w2 + mgﬁ (51)



in the limit of vanishing e. We will assume that only such
states are actually excited (we call these eigenmodes “ac-
tive”), whereas the antiparticle states acquire nonzero
amplitudes only through the medium inhomogeneities
(we call these eigenmodes “passive”). When designat-
ing the active mode eigenvectors by h; o and the passive
mode eigenvectors by hg 4, we have

: O(€%), ¢=1,2
= { Ogelg, =34 (52)

As shown in Ref. [32], due to the mutual orthogonality of
all hy, the contribution of passive modes to £ is o(¢), so it
can be neglected entirely. In other words, for the purpose
of calculating £, it is sufficient to adopt & ~ hi¢! +
hod?. Tt is convenient to write this active eigenmode
decomposition in a matrix form

o(ex) = Iy, (53)

A0 /T
D(ex) = 4| T A (54)
2563 m+A0

is a 4 x 2 matrix having hy and hg as its columns and

n(ex) = (Z;) : (55)

where

It is to be noted that 7;(ex) and 7m2(ex) describe wave
envelopes corresponding to the spin-up and spin-down
states of the Dirac electron.

€]

q* (Alc) {( KON

+ 2eem(m- k)2 | \m+A0

_q A x Epg q?
Qeﬁ(fx)—eﬂ<Bbg m+>\°)+2eeﬁ(1r-k) k x V{(

and 7 - k = ge (w — k- vo).

When substituting Egs. (51), (60), and (62) into
Eq. (56), one obtains the following effective Lagrangian
density

L= _"7]L <8t0 + \/ w2+ mgﬂf + qug) 7

i 1
+3 [n'(dem) — (den)n] + 577*0 - egrn.  (64)

The first line of Eq. (64) represents the zeroth-order La-
grangian density that would describe a spinless relativis-
tic electron. The second line, which is of order ¢, in-
troduces spin-orbit coupling effects. Also note that the

A2

k> X [kOqug + k x qBpg — (W“@H)k] -~

6

When inserting the eigenmode representation (563) into
Eq. (42), one obtains [32]

L=K—-nt(E—-U)n+oe), (56)
where
K= % [t Ot (8,1) —c.c], (57)
E = 010 + eot + qVig, (58)
U= % [#17°T* (8, %) —h.c.]. (59)

The terms K and U, which are of order ¢, represent cor-
rections to the lowest-order (in €) Lagrangian density.
Specifically, for K one obtains (Appendix B 1)

K= 5 [n' (den) — (dentyn] (60)

where d; = 0;+vp-V is a convective derivative associated
to the zeroth-order velocity field

8Eeﬂ‘ .
ap Eeff .

vo(ex) =

(61)

Regarding U, one obtains the ponderomotive spin-orbit
coupling Hamiltonian (Appendix B 2)

m+ A0 m+ A9

U= %‘7 i Qeﬁ'a (62)
where
- (A x k)3, (AZ)  k°AxX V (A?,,,C)]

Axk

30 kB = (P20} (63

Lagrangian density (64) is analogous to that describing
circularly-polarized EM waves in isotropic dielectric me-
dia when polarization effects are included [42].

VI. CONTINUOUS WAVE MODEL

Here we construct a “fluid” description of the Dirac
electron described by Eq. (64). Let us adopt the repre-
sentation 1 = 2v/Z, where Z(x) = n'n is a real function
(called the action density) and z(x) is a unit vector such
that 27z = 1. [From now on, we drop € in the function ar-
guments to simplify the notation, but we will continue to



assume that the corresponding functions are slow.] Since
the common phase of the two components of z can be
attributed to 6, we parameterize z in terms of just two
real functions ¢(x) and 9(x):

e—9/2
2(9,¢) = < ew/%?ﬁ?é%?) ' 5y

Like in the case of the Pauli particle [33], ¢ determines the

relative fraction of “spin-up” and “spin-down” quanta.

Notice that, under this reparameterization, the spin vec-

tor S(x) is given by

sin ¢ cos v

sin¢sind | | (66)
cos(

1
S = -ztez=

where S = [S| =1/2.
Expressing Eq. (64) in terms of the four independent
variables (6,7, ¢, 1) leads to

L0, Z,(,9=-T [&9—!— 72+ m2 + gV

5 () cosC —S(¢,) ﬂeﬂ] , (67)

where one can immediately recognize the first line of
Eq. (67) as Hayes’ representation of the Lagrangian den-
sity of a GO wave [43]. Four ELEs are yielded. The first
one is the action conservation theorem
0: L+ V.-(IV)=0. (68)
The flow velocity is given by V = vg + u, where
1
u= —% [§(v0 - V1) cosC + S((,9) - Qo (69)

is the spin-driven deflection of the electron’s center of
mass. The second ELE is a Hamilton-Jacobi equation

oL : 8t0+ \f7r2+mgﬂ‘+qvbg
1
~ 5 () cos¢ ~S(C,9) - R =0, (70)

whose gradient yields the momentum equation

Oy 4 (vo - V) = qEpg + qvo X By

2

+ M +V [l(dﬂ?) cos(+8S-Qegr| . (71)
2€eit 2

Note that the first line is the well known relativistic mo-
mentum equation. The first term in the second line rep-
resents the well known nonlinear ponderomotive force
due to the oscillating EM field [40] while the last two
terms represent the ponderomotive Stern-Gerlach spin
force. Finally, the remaining two ELEs are

0¢: (dg¥)sin¢ = 2(0¢8) - Qe (72)
09 : 0¢(Tcos{)+ V - (voLcosC) = 2(0yS) - Qeg. (73)
These equations describe the phase-averaged electron
spin precession. Together, Eqs. (68)-(73) provide a com-

plete “fluid” description of the ponderomotive dynamics
of a Dirac electron.

VII. POINT-PARTICLE MODEL
A. Ponderomotive model

The ray equations corresponding to the above field
equations can be obtained as a point-particle limit. In
this limit, Z can be approximated with a delta function,

I(t,%) = 8(x — X(1)), (74)

where X(t) is the location of the center of the wave
packet. As in Refs. [32, 33], the Lagrangian density (67)
can be replaced by a point-particle Lagrangian L.g =
f L d3z, namely, ’

. ih .
Lg|X,P, 2,21 =P . X + % (ZTZ _ ZTZ)

- eff(tax)Pa Za ZT)? (75)

where the effective Hamiltonian is given by

Heff(t, X,P, 7, ZT) = 'Yeffmc2 + qug . gZTU Qe Z.
(76)
Here P(t) = V0(t,X(t)) is the canonical momentum,
and Z(t) z(t,X(t)) is a complex two-component
spinor. For clarity, we have re-introduced ¢ and h.
The effective Lorentz factor associated with the particle
oscillation-center motion is

2
Yot (£, X, P) = J1+a3 R (3 - qA—"g) L)

me  mc?

where

a* (Als)

ag(t, X)=- -y

(78)
is positive under the assumed metric. For example, sup-
pose a standard representation of the laser vector po-
tential is Agsc = Re[AL(x)e?®], where A} -k = 0
[38, 44, 45]. Then, the Lorentz condition (12) determines
the scalar potential envelope Visee = i(V - Ay )c?/w =
O(e). Hence, Eq. (78) yields

¢*lAL]?
Im2ct

ap ~ (79)
where we neglected a term of O(e2). Note also that,
loosely speaking, a3 is the measure of the particle quiver
energy in units mc?. Accordingly, nonrelativistic inter-
actions correspond to ap < 1.

The effective precession frequency Qg is given by

Qer(t, X, P) = Q) + Qo+ Q3+ O(?),  (80)

where



Q(t,X,P) i%ﬂqmc (Bbg - %ﬁ;g) , (81)
- - G20 )
Q3(t, X,P) = — 27::;;“.(2)‘()2 (mc;)_j:Aoc B k) B [wngg n k x szg _ (H“Bﬂ)k}

Here II* = (mcyeg, P — qAyg/c), k* = (w/c,k), 8, =
(c710;, V), and

AL X P) — T k.,m2c2a% »
NN\, A EK)= ~ — K" =

Notably, A* — II* at a9 — 0 and A* — II* —
ktmclag/(2w) at ag — 4o00. Also, if the spin-orbital in-
teraction is neglected, the present model yields the spin-
less ponderomotive model that was developed in Ref. [41]
for a particle interacting with a laser pulse and a slow
background fields simultaneously.

Treating X(t), P(t), Z(t), and Zt(t) as independent
variables leads to the following ELEs:

oP X = m020P'Yeff -S- 8Pneﬂ', (85)
§X: P = —0x(mcPyer + qVig) +S - 0xQesr,  (86)
AR A %neg oz, (87)
§7: Zt= —%ZTQeH .o, (88)

where S(t) is the particle spin vector,

K
2
and S = h/2. Equations (77)-(89) form a complete set
of equations. The first terms on the right hand side of
Eqs. (85) and (86) describe the dynamics of a relativistic
spinless particle in agreement with earlier theories [38-
41]. The second terms describe the ponderomotive spin-
orbit coupling. Equations (87) and (88) also yield the
following ponderomotive equation for spin precession,

S(t) = 52" (t)e2(1), (89)

which can be checked by direct substitution. Equations
(75)-(90) are the main result of this work.

B. Extended BMT model

Let us compare our ponderomotive point-particle
Lagrangian (75) with the complete point-particle La-

grangian of a Dirac electron [32]

Lxsmr[X,P, 2,21 =P - X + %i (ZTZ‘— Z'TZ)
— Hxpur(t, X, P, 2,21, (91)

where the Hamiltonian is given by

Hxpur(t, X,P,Z,Z") = yme? + qV — SZTU - QpMTZ

(92)
and the BMT precession frequency [26] is
qg [B (vo/e) xE
Q tL,X,P)=—|— - —(2 " —
BMT( y 4hy ) me |:’Y 1 ¥+ ” 1 (93)

Here vo =1II/(ym)}, and

y(t, X, P) = \/1 + (3 _ A )2. (94)

mec  mc?

ObViOUSly, LXMBT — Leff when ag — 0.
The corresponding ELEs are

P X= 7% — 8- 0pQpwmr, (95)
6X: P=¢gE+ P anB + S 0x M, (96)
6zt 7= %QBMT o7, (97)
6z : 7t = —%ZTQBMT 0. (98)

These equations also yield the BMT spin precession equa-
tion, similar to Eq. (90), with Qg replaced by Qgumr.
However, as opposed to the original BMT model [26, 30],
Eqgs. (95)-(98) also capture the spin-orbital coupling. Be-
cause of that, they represent a generalization of the BMT
model, which we call “extended BMT” (XBMT).

The XBMT model applies, in principle, to arbitrary
fields, provided that (i) the spin-orbital coupling is weak
and (ii) the particle de Broglie wavelength X remains
much shorter than the smallest spatial scale of the EM
fields. In application to the particle motion in a laser
field, it can describe details that the ponderomotive
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FIG. 1: Motion of a single Dirac electron under the action of a relativistically intense laser pulse (numerical simulation):
black dashed — ponderomotive model described by the Lagrangian (75); colored — XBMT model described by the Lagrangian
(91). (a) Schematic of the interaction; yellow and red is the laser field, blue is the particle; arrows denote the direction of
the laser wave vector k, the oscillating vector potential Agsc, the particle canonical momentum P, and the particle spin S.
The unit vectors along the reference axes are denoted by e;. Figures (b)-(f) show the components of the particle canonical
momentum P, Lorentz factor <y, velocity V, and spin S. The red, green, and blue lines correspond to projections on the
z, y, and z axes, respectively. We consider an electron initially traveling along the z-axis and colliding with a counter-
propagating laser pulse. The initial position of the particle is Xo = (£/2)e,, the initial momentum is Po/(mc) = 20e,, and
the normalized initial spin vector is So/h = 0.14e; + 0.33e, + 0.35e,. The envelope of the vector potential of the laser pulse is
qAosc/(mc?) = 30 sech [(z — 5€+ ct) /€] exp [ (z* + y*) /£?] e, where £ = 20|k| ™. These parameters correspond to a maximum

intensity I'max ~ 1.23 x 10" W/cm? for a 1 um laser.

model misses due to phase averaging. In this sense,
the XBMT model is more precise than the ponderomo-
tive model above. However, the XBMT (and, similarly,
BMT) model is also more complicated for the same rea-
son and, in application to laser fields, requires A/Aj, < 1,
where Ay, is the laser wavelength. No such assumption
was made to derive the ponderomotive model above. In-
stead, Eq. (13) was assumed, which implies

A AL < ¢/, (99)

where vy is the particle speed. For nonrelativistic parti-
cles (v < ¢), this can be satisfied even at A, < A. In that
sense, the ponderomotive model is, perhaps surprisingly,
more general than XBMT.

VIII. NUMERICAL SIMULATIONS

To test our ponderomotive model, we applied it to sim-
ulate the single-particle motion and compare the results
with the XBMT model in two test cases. In the first test
case, we consider the dynamics of a Dirac electron col-
liding with a counter-propagating relativistically strong
(ap > 1) laser pulse. The simulation parameters are
given in the caption of Fig. 1, and a schematic of the
interaction is presented in Fig. 1(a). From Figs. 1(b)-
1(e), it is seen that the ponderomotive model accurately

describes the mean evolution of the particle momentum,
kinetic energy, and velocity. The main contribution to
the variations in V, and V, is the ponderomotive force
caused by spatial gradient of the effective mass. How-
ever, the acceleration on the xz-plane is caused by the
Stern-Gerlach force, as shown in Fig. 1{e). Also notice
that the ponderomotive model is extremely accurate in
describing the particle spin precession, as can be seen in
Fig. 1(f).

In the second test case, we consider a Dirac electron
immersed in a background magnetic field along the z-
axis and interacting with a laser plane wave traveling
along the z-axis. The simulation parameters are given in
Fig. 2. As can be seen in Figs. 2(a)-2(f), the ponderomo-
tive model accurately describes the particle position, mo-
mentum, velocity, and spin. Notably, these simulations
also support the spinless model developed in Ref. [41] for
a particle interacting with a relativistic laser field and a
large-scale background field simultaneously.

IX. CONCLUSIONS

In this paper, we report a point-particle ponderomotive
model of a Dirac electron oscillating in a high-frequency
field. Starting from the first-principle Dirac Lagrangian
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FIG. 2: Motion of a Dirac electron under the action of an external background field and a relativistically intense laser pulse
(numerical simulation): black dashed — ponderomotive model described by the Lagrangian (75); colored — XBMT model
described by the Lagrangian (91). Figures (a)-(c) show the components of the particle canonical momentum P, velocity V, and
spin S. The red, green, and blue lines correspond to projections on the =z, y, and z axes, respectively. We consider an electron
initially traveling along the z-axis and colliding with a counter-propagating laser pulse. Figures (d)-(f) show the components of
the particle position X. The initial position of the particle is Xo = 0, the initial momentum is Po/(mc) = (—2e, +3e,), and the
normalized initial spin vector is So/h = 0.14e,+0.33e, +0.35e,. A background magnetic field is added such that qAyg/(me?) =
0.1(—yes + zey)/2, which corresponds to a static homogeneous magnetic field Byg ~ 10.7 MG aligned towards the z-axis. The
envelope of the vector potential of the laser pulse is assumed to have the form gAcsc/(mc?) = 10 sech [(z — 8¢ + ct)/f] e, where
£ =20[k|™!. These parameters correspond 0 a maximum laser intensity Imax ~ 1.37 x 10%° W/cm? for a 1pum laser.

density, we derived a reduced phase-space Lagrangian
that describes the relativistic time-averaged dynamics of
such particle in a geometrical-optics laser pulse in vac-
uum. The pulse is allowed to have an arbitrarily large
amplitude (as long as radiation damping and pair pro-
duction are negligible) and, in case of nonrelativistic in-
teractions, a wavelength comparable to the electron de
Broglie wavelength. The model captures the BMT spin
dynamics, the Stern-Gerlach spin-orbital coupling, the
conventional ponderomotive forces, and the interaction
with large-scale background fields (if any). Agreement
with the BMT spin precession equation is shown numer-
ically. The well known theory, in which ponderomotive
effects are incorporated in the particle effective mass, is
reproduced as a special case when the spin-orbital cou-
pling is negligible.

These results can be extended in several directions.
Since a canonical phase-space Lagrangian is obtained,
the proposed theory can be readily implemented in a
full kinetic simulation of a relativistic spin-1/2 plasma
(similar to Refs. [27, 28]). Note that only dilute plasmas
can be simulated at this stage, because of the assumed
vacuum dispersion relation (10). However, in the future,
this requirement could be easily relaxed at least for weak
EM waves when the amplitude can be treated as a small
parameter additional to .

As a final note, the underlying essence of this paper
is to illustrate the convenience of using the Lagrangian

wave formalism for deriving reduced point-particle mod-
els. To derive the ponderomotive model above by using
the point-particle equations of motion and spin would
have been a torturous task. However, the bilinear struc-
ture of the wave Lagrangian enabled a straightforward
deduction the reduced model. Following this reasoning,
we believe that the ability to treat particles and waves
on the same footing as fields may have far-reaching im-
plications, e.g., for plasma theory. This will be discussed
in future publications.
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Appendix A: Semiclassical Volkov state

Volkov states are eigenstates of the Dirac equation
with an homogeneous EM vacuum field [46-48|. Here we
present a derivation of these states. Consider the second
order Dirac equation,

1
(DHDH +m? + §qawFW) Y =0, (A1)



mr

where 1D, =0, —qA, is the covariant derivative, 7, =
[Yus7]/2 is twice the (relativistic) spin operator, and
P = grAY — 9V A* is the EM tensor. We start with
the case, where Ayg is constant and A.s(©) is strictly
periodic. Since Eq. (A1) is linear, we search for 1 in the
Floquet-Bloch form. Specifically, we consider ¢ = ue®,
where u is a periodic four-component function of © and
Pu = —0,0 is constant. It is also convenient to rewrite u
in the form u = e®®Z¢, where E(0) is a matrix operator,
6(0) is a real scalar function, and ¢ is a constant four-
component spinor. This leads to

[ 2 —-m —|—2(7T k)6@9 2(](7!' Aosc)+q Aosc] :

. . 1 .
—2i(m - k) (DeE)p — quu,,F“".:go =0, (A2)
where m# = pt — g AL .

Equation (A2) can be satisfied identically if we require
that 8 and = satisfy the following equations:

7 —m? + 2(m - k)aeé —2q(m - Apse) + qugSC 0,
(A3)
1
—2i(7 - k) (Do E) — Qqam,F’“’E =0. (A4)

The integration constants can be chosen arbitrarily since
they merely redefine . We hence require = — Iy at
vanishing A, and () = 0 (so that @ represents a phase
shift due to the oscillating EM field). For =, this gives

E(ex,©) =7'exp|i k)/ o de)/]

;:]I4 + Z(F—-l()kAOSC(e), (A5)
where we used
O’uuF‘W =Ouv (BMAU - 8VA“)
= — 0., (k00 AV, — k¥ B0 Al,)
= - Z(%a@Aosc i aG)AAosck:)
= - 27:%3@4105(:' (A6)
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Here fAqsct+Agsck = 0 since k-Agge = 0 [see Eq. (12)]. We
note that the ordered exponential [denoted by 7T exp(...)]
becomes an ordinary exponential due to

Ty F (01)00e F*4(02)
= —4}6 [86Aosc (@1)]%[69410% (@2)]

= 4f K00 Aec(01) Aosc(O2)
—0, (A7)

where we substituted Eq. (11). To obtain §, we aver-
age Eq. (A3). This leads to Eq. (47), which serves as
a dispersion relation for m,. Subtracting Eq. (47) from
Eq. (A3) and solving for f leads to Eq. (21). Finally, if
one substitutes ¢ = Ze®®*tY into the first-order Dirac
equation, one finds that constant ¢ indeed satisfies that
equation.

The above solution can be extended also to a wave
with a slowly inhomogeneous amplitude; i.e., when the
vector potential has the form A(ex, ©). This can be done
by substituting the ansatz, ¢ = Ze®+%¢, into the Dirac
equation with the same = and 6, as before, and requiring
that p,, is slow. This will lead to an equation for ¢ with a
perturbation linear-in e. Hence, one can construct a solu-
tion for ¢ as an asymptotic power series in €. The general
form of such series in given by Eq. (20), and finding the
coefficients ¢, explicitly is not needed here.

Appendix B: Auxiliary Formulas
1. Kinetic Term K

Let us re-express Eq. (57) as

1
K =5 [0 TOU (@) + 5" ¥ T - ¥(Vr) —c.c].

(B1)
Substituting Eqs. (41), (45), (46), and (54) into Wy°T0¢
leads to



T 0w

m+ A0

. 2ot (]IQ m+)\°) [H4

m‘l‘)\o A ]IQ
B 2eef (]I2 m"’+>\0) [( z3

m+A0

12

m+ A0 k o
. i o\ 0 0

o 2 ) <7 " k) (m)
koa
7k

( @0 ()
T

—o-k K sy
0 (ok)(a-A
__ka kO]I m2|~(/\ )

Tk \—o-k+k:%3

A0 A° k° - §
_mtAfy _Kafo %A, A i
2eeft (m+X92 7.k m 4+ X0 (m+ A0)2
m+ A0 (A2 —m? Kal,, 2k-A (A2 —m?
= 1 - KO — pr0 L Ty
2 (m+ 292 7.k m -+ X0 {m + A0)2
=I,, (B2)
where X - X = m? from Eq. (48). Also notice that A -k = 7 - k from Egs. (10) and (45). Similarly,
A0 I
topy =M EA . e 0 0 2
Uy Qe et (T2 i) (fy v krr K7 k) ——m
m+A° (I =) 00\ , «a K —o-k Iy
T 2%z Vo MmN/ \o 0 r-k\—o-k k° Z3n
o(o-) 0 (o-k)(o:N)
T (1 2 | (W) -kt (KR
2t o - —o -k + k' ZL2 ey
m+X (oA + (o /\)O'_ka Lo 2k L0 2 I,
26 m 4 X0 -k m + X0 (m + A0)2
_ A —ka I,
Eeff
T
=—1Is.
L (B3)
[
Hence, notice the following corollary of Eqgs. (B2) and  using Eqgs. (54) and (B4):
(B3) that we will use below:
Im [@7 Oru(ae )0y, €est
(\I[T/YOI‘P‘\I[)au = ]12 (815 + _l . V) B ]Igdt, (B4) [ e e ]
Eoff - —-2-Im [(\IIT'yOI‘“\I/)BH In Eeff]
where d; is the same as defined in Sec. VB. Substituting 1
Eq. (B4) into Eq. (57) leads to Eq. (60). =—5Im (d¢ Ineesr)
=0 (B7)
2. Expression for U
since €ef is real. Then, Y = —~P, — P, — Q; — Q,, where
An alternative representation of ¢ in Eq. (59) is
= TA0T0
U = —Im [U11°T4(9,3)] , (B5) Po=Im [U1°T0(05, W) (0, 1:)] (B8)
P =Im [T14°T(0,,T) - (V)] (B9)
where “Im” is short for the “anti-Hermitian part of.” To . t 070 0
calculate 9, ¥, let us consider ¥ as a function =Im [T T (02 1)(3:%)] (B10)
Qw =Im [T T (850 T) - (WA?)] . (B11)
U(t,x) = Uleeq(t, %), A2(t, %), A(t, X)). (B6)
Notice that the contribution to Eq. (B5) from the partial When substituting Egs. (41), (45), (46), and (54) into

derivative with respect to €. is zero. This is shown by

P;, we obtain
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P, =Im [\I/T "TO(00, )(0:1)]

[ Z °°<°>]
Im p— I { caa
) ey
m+)\01 koa K —o-k 0
2€of +)‘0 m-k\-o-k K ;_ft/\%
)

%eﬁ‘“‘{( Ka %t) Lo (-, 56:09)])

(@ Ao N | ko . _ Ka (a-A)(o--kO(')t)\)]
2eeﬂm[ m 4+ A0 +7r-k(" K)o 0N — T e

A X O Ko X x kK99 o 0
— oM. B12
26630 [m+)\° m-k m+A° Tr-kk>< O (B12)

The next term, Py, is calculated similarly:

Pz =Im [T1°T (85, T) - (V)]

m+ A oA 0 o a K —o-k 0
el 00 v ) )

e (1) -2 ()

1 e Ko (a A)(k V)(
—-2EeHIm [(G-V)(a-)\)—l—n(a-k)(k-V)(a‘-)\) - m—l—)\o ]
1 o Kla X x (k- V)X
_ _ o , o _ B13
26656 [VX)\—FW-ka(k WA -k m4+X0 ] (B13)
Furthermore, the expressions for Q; and Q, are given by
Q¢ =Im [T11°T(850 T)(8,\°)]
m + A° o Ka ( K —o-k 0
" 2 Im{(b i) [h_ ok (—U'k K? ) (‘%@/\0
O A0 m{(, < 0 _ Ko ((o-k)(o- /\)‘)
2eeff(m + )\0) 5 m“") -0 A J—_— k% -\ !
_ N0 (- XN(o-A) ko (%20 (o0 A)(o - .\)]
_26eﬂ(m+>\0)1m [_ m+ A0 _TF-k(o- k)(o-2)+ mk m + A0
k08, A0 o
_ . Bl4
Bean(m 1+ 20y 7 kO kXA (B14)
Q. =Im [Ty OF(mOW) (v A")
_m + )\OI _ k.O —o-k . 0
T 2y L 550) i k —o-k k° — R VA
1 22 [(~(o- V)@ ) 0@ ((o-k) o X)
_2565(m+)\0)1m{(]12 m+)\0) [( 0 — (k- VA )ﬁ _kO((7 - )
_ 1 . 0 ) (e 0y_& . N 0(g-A)(o-A)
_2€eﬁ(m+)\°)1m{ (- VA ) (o -A)— (k- VA )7r-k [(a’ k)(o-A) -k T
—— o__a w20
- T [,\ x VA® — (ke x A) (k- VA )J . (B15)
Substituting Egs. (B12)-(B15) leads to
B A X (VA2 +,0) o u a KOA X (#8,)A + (k x A)(k"8,)A\°
B 268&0‘[Vx)\+ m + X0 +7r-kkx(k 6“)/\_7r-k m+ A0 ] (B16)



Equation (B16) can be simplified as follows. The first
term can be rewritten as

VX A=V x(m+ka)
=V X (V8 — qAp, + ka)

= — By —k x Va (B17)

since V x k = V x VO = 0. Moreover, we note that
92,0 = 02,6. Hence,
VA =Vr® + aVE + k°Va
~ — V(8 + qVig) — alik + k°Va
== 0:(VO — qAvg) — ¢(VVig + 0; Apg)
—adk + k°Va

=— A + qEpg + k°Va + kb,o. (B18)

Similarly, the numerator of the last term simplifies to

q A X By g2
U= B — :
26330- < e 0 ) i dees(m - k)a

n o _ KOX
2eest (mr - k)D- m+ A0

We can simplify the last two lines of Eq. (B21) with

V(m k) + (k*8,)m
=V’ — k- m) + k%07 + (k- V)7
~k%qEpg + m°VE® + (k- V) — V(k- )
=k%qEpg — 1°V8,0 + (k- V)
—n'V9,0 — k; V'
=k%qEp; — %0k — (7 - V)k + (k - V)w — k;Vrt
=k%qEbg — (1*0,)k —k x (V x )
=k%qBpg - (m40,)k — k x [V x (V6 — gAg)]
=k%qEbg + k x ¢Bpg — (7#8,,)k, (B22)

kx V(AZ )~

- k) X [V(m k) + (k*8,)7] —

14

KOX x (K#0u)X + (k x A)(K*8,)A°

=Ax [K°(k*8,)m — k(k"9,)n"] (B19)
where
(k"9,)k =k°0,k + (k- V)k
=k'V 9,0 + k'VH,0
=—kOVEkO + K'VE;
=— V[(k")* - K] /2
=0 (B20)

and (k*9,)k® = 0. Here we used Eq. (10). By substitut-
ing Egs. (B17)-(B19) and explicitly showing the deriva-
tives of a, we obtain

A=K (A%) KA x V(AZ)
m -+ A0 m+ A0
e o-{(Axk)
2eem(m k) m+ X0

[(k*0,)m° — By(m - k)]. (B21)

(k"8,)7° — 8,(m - k)
=k°0,7° + k- V¥ — 8,(r°k° — . k)
=k V% + 8;(m - k) — n°8,k°
o~k - (=0 + qEpg) + 0y (m - k) — 7°8,k°
=gk - Epg — 70k° + - 9k
=gk - Epg — 7°0,k° + 7 - 5,VO
=¢k - Epg — 7°0;k° — (7 - V)&

=gk - Epg — (7"9,,)k°. (B23)

Hence, we obtain Eqgs. (62) and (63).

(1] D. B. Melrose, Quantum Plasmadynamics. Unmagnetized
Plasmas (Springer, New York, 2008).

[2] G. Brodin, M. Marklund, and G. Manfredi, “Quantum
plasma effects in the classical regime,” Phys. Rev. Lett.
100, 175001 (2008).

[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M.
Daughton, S. von Molndr, M. L. Roukes, A. Y.
Chtchelkanova, and D. M. Treger, “Spintronics: a spin-
based electronics vision for the future,” Science 294, 1488
(2001).

[4] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura,
C. Monroe, and J. L. O’Brien, “Quantum computers,”
Nature 464, 45 (2010).

(5] M. Marklund and G. Brodin, “Dynamics of spin-1/2
quanfum plasmas,” Phys. Rev. Lett. 98, 025001 (2007).

(6] G. Brodin, M. Marklund, J. Zamanian, A. Ericsson, and
P. L. Mana, “Effects of the g Factor in Semiclassical
Kinetic Plasma Theory,” Phys. Rev. Lett. 101, 245002
(2008).

[7] A. Dixit, Y. Hinschberger, J. Zamanian, G. Man-



fredi, and P.-A. Hervieux, “Lagrangian approach to the
semirelativistic electron dynamics in the mean-field ap-
proximation,” Phys. Rev. A 88, 032117 (2013).

[8] P. A. Andreev and L. S. Kuz'menkov, “Many-particle
quantum hydrodynamics: Basic principles and funda-
mental applications,” arXiv (2014), 1407.7770.

[9] P. A. Andreev, “Separated spin-up and spin-down quan-
tum hydrodynamics of degenerated electrons: Spin-
electron acoustic wave appearance,” Phys. Rev. E 91,
033111 (2015).

{10] P. A. Andreev and L. S. Kuz'menkov, “Oblique propaga-
tion of longitudinal waves in magnetized spin-1/2 plas-
mas: independent evolution of spin-up and spin-down
electrons,” arXiv p. 1406.6252 (2014), 1406.6252.

[11] G. Brodin, M. Marklund, J. Zamanian, and M. Ste-
fan, “Spin and magnetization effects in plasmas,” Plasma
Phys. Control. Fusion 53, 074013 (2011).

[12] M. Stefan and G. Brodin, “Linear and nonlinear wave
propagation in weakly relativistic quantum plasmas,”
Phys. Plasmas 20, 012114 (2013).

[13] O. Morandi, J. Zamanian, G. Manfredi, and P.-A.
Hervieux, “Quantum-relativistic hydrodynamic model
for a spin-polarized electron gas interacting with light,”
Phys. Rev. E 90, 013103 (2014).

[14] H. A. H. Boot and R. B. R.-S. Harvie, “Charged parti-
cles in a non-uniform radio-frequency field,” Nature 180,
1187 (1957).

[15] A. V. Gaponov and M. A. Miller, “Quasipotential the-
ory,” Sov. Phys. JETP 7, 168 (1958).

[16] J. Cary and A. N. Kaufman, “Ponderomotive force and
linear susceptibility in Vlasov plasma,” Phys. Rev. Lett.
39, 402 (1977).

[17] G. Brodin, A. P. Misra, and M. Marklund, “Spin contri-
bution to the ponderomotive force in a plasma,” Phys.
Rev. Lett. 105, 105004 (2010).

[18] M. Stefan, J. Zamanian, G. Brodin, A. P. Misra, and
M. Marklund, “Ponderomotive force due to the intrinsic
spin in extended fluid and kinetic models,” Phys. Rev. E
83, 036410 (2011).

[19] A.I. Akhiezer and R. V. Polovin, “T'’heory of wave motion
of an electron plasma,” Sov. Phys. JETP 3, 696 (1956).

[20] T. W. B. Kibble, “Mutual refraction of electrons and
photons,” Phys. Rev. 150, 1060 (1966).

{21] T. W. B. Kibble, “Refraction of electron beams by in-
tense electromagnetic waves,” Phys. Rev. Lett. 16, 1054
(1966).

[22] E. Raicher, S. Eliezer, and A. Zigler, “The Lagrangian
formulation of strong-field quantum electrodynamics in
a plasma,” Phys. Plasmas 21, 053103 (2014).

[23] Under certain conditions, the effective-mass theory is also
extendable to interactions in the presence of arbitrarily
strong large-scale magnetic fields [I. Y. Dodin and N. J.
Fisch, Phys. Rev. E 77, 036402 (2008)] and plasmas with
small yet nonzero background density [V.I. Geyko, G. M.
Fraiman, I. Y. Dodin, and N. J. Fisch, Phys. Rev. E 80,
036404 (2009)].

[24] P. A. M. Dirac, “The quantum theory of electron,” Proc.
Roy. Soc. Lond. A 117, 610 (1928).

[25] E. R. Tracy, A. J. Brizard, A. S. Richardson, and
A. N. Kaufman, Ray Tracing and Beyond: Phase Space
Methods in Plasma Wave Theory (Cambridge University
Press, New York, 2014).

[26] V. Bargmann, L. Michel, and V. L. Telegdi, “Precession
of the polarization of particles moving in a homogeneous

15

electromagnetic field,” Phys. Rev. Lett. 2, 435 (1959).

[27] M. Marklund and P. J. Morrison, “Gauge-free Hamil-
tonian structure of the spin Maxwell-Vlasov equations,”
Phys. Lett. A 375, 2362 (2011).

[28] I. Y. Dodin, “On variational methods in the physics of
plasma waves,” Fusion Sci. Tech. 65, 54 (2014). .

[29] I. Y. Dodin, “Geometric view on noneikonal waves,”
Phys. Lett. A 378, 1598 (2014).

[30] In this work, the small contribution of the anomalous
magnetic moment term is neglected but could be included
too, at least as a perturbation.

[31]) 1. Y. Dodin and N. J. Fisch, “Axiomatic geometrical op-
tics, Abraham-Minkowski controversy, and photon prop-
erties derived classically,” Phys. Rev. A 86, 053834
(2012).

[32] D. E. Ruiz and I. Y. Dodin, “Lagrangian geometrical
optics of nonadiabatic vector waves and spin particles,”
Phys. Lett. A 379, 2337 (2015).

[33] D. E. Ruiz and I. Y. Dodin, “On the correspondence
between quantum and classical variational principles,”
Phys. Lett. A 379, 2623 (2015).

[34] G. B. Whitham, “A general approach to linear and non-
linear dispersive waves using a Lagrangian,” J. Fluid
Mech. 22, 273 (1965).

[35] G. B. Whitham, Linear and Nonlinear Waves (John Wi-
ley & Sons, New York, 2011).

[36] V. P. Yakovlev, “Electron-positron pair production by a
strong electromagnetic wave in the field of a nucleus,”
Sov. Phys. JETP 22, 223 (1966).

[37] B. Thaller, The Dirac Equation (Springer, Berlin, 1992).

[38] G. Malka, E. Lefebvre, and J. L. Miquel, “Experimental
observation of electrons accelerated in vacuum to rela-
tivistic energies by a high-intensity laser,” Phys. Rev.
Lett. 78, 3314 (1997).

[39] B. Quesnel and P. Mora, “Theory and simulation of the
interaction of ultra-intense laser pulses with electrons in
vacuum,” Phys. Rev. E 58, 3719 (1998).

[40] P. Mora and T. M. Antonsen Jr., “Kinetic modeling of
intense, short laser pulses propagating in tenuous plas-
mas,” Phys. Plasmas 4, 217 (1997).

[41] I. Y. Dodin, N. J. Fisch, and G. M. Fraiman, “Drift
Lagrangian for a relativistic particle in an intense laser
field,” JETP Lett. 78, 202 (2003).

[42] D. E. Ruiz and 1. Y. Dodin, “First-principle variational
formulation of polarization effects in geometrical optics,”
to appear in Phys. Rev A.

[43] W. D. Hayes, “Group velocity and nonlinear dispersive
wave propagation,” Proc. Roy. Soc. Lond. A 332, 199
(1973).

[44] P. Mora and T. M. Antonsen Jr., “Electron cavitation
and acceleration in the wake of an ultraintense, self-
focused laser pulse,” Phys. Rev. E 53, R2068 (1996).

[45] P. Mora and B. Quesnel, “Comment on ‘Experimental
observation of electrons accelerated in vacuum to rela-
tivistic energies by a high-intensity laser’,” Phys. Rev.
Lett. 80, 1351 (1998).

[46] D. M. Volkov, “On a class of solutions of the Dirac equa-
tion,” Z. Phys. 94, 250 (1935).

[47] J. Bergou and S. Varro, “Wavefunctions of a free-electron
in an external field and their application in intense
field interactions: II. relativistic treatment,” J. Phys. A:
Math. Gen. 13, 2823 (1980).

[48] E. Raicher and S. Eliezer, “Analytical solutions of the
Dirac and the Klein-Gordon equations in plasma induced



by high-intensity laser,” Phys. Rev. A 88, 022113 (2013).

16



é PRINCETON
('S PLASMA PHYSICS
S LABORATORY

Princeton Plasma Physics Laboratory
Office of Reports and Publications

Managed by
Princeton University

under contract with the
U.S. Department of Energy
(DE-AC02-09CH11466)

P.O. Box 451, Princeton, NJ 08543 E-mail: publications@pppl.gov
Phone: 609-243-2245
Fax: 609-243-2751 Website: http://www.pppl.gov



http://www.pppl.gov

	5110 Hammett_shi.pdf
	A Gyrokinetic 1D Scrape-Off Layer Model of an ELM Heat Pulse
	Abstract
	Introduction
	Electrostatic 1D gyrokinetic model with kinetic electrons
	Electrostatic model with a modified ion polarization term

	Numerical implementation details
	Boundary Conditions

	Simulation Results
	Initial Conditions
	Divertor heat flux with drift-kinetic electrons
	Divertor heat flux with Boltzmann electron model

	Conclusions
	Acknowledgments





