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Action principle for Coulomb collisions in plasmas

Eero Hirvijoki∗

Department of Applied Physics, Chalmers University of Technology, 41296 Gothenburg, Sweden

(Dated: September 15, 2015)

In this letter we derive an action principle for Coulomb collisions in plasmas. Although no natural
Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is
found considering the system of partial differential equations that couple the distribution function
and the Rosenbluth potentials. Exact conservation laws are derived after generalizing the energy-
momentum stress tensor for second order Lagrangians and, in the case of a test-particle population
in a given plasma background, the action principle is shown to correspond to the Langevin equation
for individual particles. Being suitable for discretization, the presented action allows construction
of variational integrators. Numerical implementation is left for a future study.

Introduction – The principle of stationary action and
the Noether theorem provide powerful tools for analyz-
ing mechanics of particles and fields. Using them, it is
possible to find a conservation law for any symmetry in
a Lagrangian. Both tools also apply to discrete mechan-
ics, allowing one to construct variational integrators (see
e.g. [1, 2]) which typically conserve the discrete coun-
terparts of the conserved continuous quantities. It is no
wonder that physicists have had a long-lasting love affair
with action principles.

In plasma physics, simulations are entering an era
where conservation of energy and momentum is not only
a desired feature but a necessity: it would be difficult
to trust the results of, for example, global turbulence
simulations if numerical methods resulted in artificial
damping or growth of turbulence. Superior numerical
properties in mind, variational algorithms have been re-
cently developed for particle dynamics [3–5] as well as for
Vlasov-Maxwell and Vlasov-Poisson systems [6, 7].

Action principles in plasma physics (see e.g [8–12] for
Eulerian formulations of the Vlasov-Maxwell system) are,
however, still lacking the collisional effects. Emerging in
the form of a collision operator in the kinetic equation for
a single-particle distribution function, they describe the
binary Coulomb interactions between particles and play
an essential role providing equilibration and increasing
entropy. Only together, the Vlasov-Maxwell system and
the collision operator provide a fundamental description
for plasmas. An action principle for Coulomb collisions
is thus desired and, in this letter, we provide one.

The Landau-Fokker-Planck equation, describing the
collisional evolution of the distribution function in the
velocity space, is a non-linear integro-differential equa-
tion and, unfortunately, does not exhibit a natural La-
grangian. Thanks to Rosenbluth [13], the Fokker-Planck
equation can, however, be formulated as a set of coupled
partial differential equations: a diffusion-advection equa-
tion for the distribution function f in the velocity space,
and two Poisson equations for potential functions φ and
ψ from which the velocity-space advection and diffusion
coefficients can be computed. As Ibragimov [14, 15] has
found a way to obtain Lagrangians and conservation laws

for any system of partial differential equations of arbi-
trary order, we combine the two ideas and find an action
principle for Coulomb collisions.

The letter proceeds by first shortly reviewing the clas-
sical field theory and its extension by Ibragimov for
our purposes. We then derive a generalization of the
energy-momentum stress tensor for Lagrangians contain-
ing derivatives up to second order, and apply the theory
to the Rosenbluth-Fokker-Planck system. We obtain two
second order Lagrangians and show that the total energy
and momentum carried by the fields of the extended sys-
tems are conserved. Finally, before summarizing our re-
sults, we discuss the connection of our action principle to
the Langevin equation for an individual particle.

As variational integrators have already been con-
structed for specific nonvariational partial differen-
tial equations that admit first order extended La-
grangians [16], we anticipate the procedure to be applica-
ble to second order Lagrangians, and to the Rosenbluth-
Fokker-Planck system as well. Finding such a variational
algorithm is, however, left for a future study.

Mathematical preliminaries – Throughout this let-
ter, we use the following notation: the independent
variables (coordinates) in the phase-space-time are de-
noted by x = {xµ}mµ=0 = (t, x1, . . . , xm) with m the di-
mension of the phase-space and the phase-space compo-
nents being {xi}mi=1. The dependent variables (fields)
are denoted by u = {uα}nα=1 = (u1, . . . , un) with n the
number of fields. Partial derivatives of the dependent
variables with respect to the independent coordinates are
denoted by the convention uαµ = ∂uα/∂xµ, which allows
for a compact notation for a collection of derivatives ac-
cording to u(1) = {uαµ}µ,α, u(2) = {uαµν}µν,α etc. We also
use the differential

Dµ =
∂

∂xµ
+ uαµ

∂

∂uα
+ uαµν

∂

∂uαν
+ . . . , (1)

and define the action A[u] for the fields u as the integral

A[u] =

∫

L(x, u, u(1), u(2), . . . ) dx, (2)

where L(x, u, u(1), u(2), . . . ) is the Lagrangian (density).
Summation over repeated indices is assumed.
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In most of the classical problems in physics that pos-
sess known Lagrangians, the Lagrangian contains deriva-
tives only up to first order, i.e., L(x, u, u(1)), and the
Euler-Lagrange equations resulting from the principle of
stationary action take a familiar form

∂L

∂uα
−Dµ

∂L

∂uαµ
= 0. (3)

In this case, the Noether theorem provides conservation
laws for each symmetry in the Lagrangian according to

Dµj
µ = 0, jµ = ξµL+ (ηα − ξνuαν )

∂L

∂uαµ
, (4)

where the flux jµ is also known as the Noether current.
The vector fields ξ and η appearing in jµ have to satisfy
the invariance condition

X(L) + LDµ(ξ
µ) = 0, (5)

where the generator for the infinitesimal transformation,
under which the Lagrangian is invariant, is given by

X = ξµ
∂

∂xµ
+ ηα

∂

∂uα
+ [Dµ(η

α)− uανDµ(ξ
ν)]

∂

∂uαµ
. (6)

According to Ibragimov [14, 15], one may construct a
Lagrangian for an arbitrary system of partial differential
equations of any order (s) as long as the number of de-
pendent fields equals the number of differential equations.
The recipe is simple: for a set of n differential equations
for n fields f = {fα}nα=1 that are defined implicitly by

Fα(x, f, f(1), . . . , f(s)) = 0, α = 1, . . . , n (7)

the Lagrangian is given by

L = f⋆αFα, (8)

where f⋆ = {f⋆α}nα=1 are the so-called auxiliary fields.
Further, the adjoint equations, that describe the evolu-
tion of the auxiliary fields, are given by

F ⋆α(x, f, f
⋆, f(1), f

⋆
(1), . . . ) =

δL

δfα
= 0, (9)

where the Euler-Lagrange operator is defined by

δ

δuα
≡

∂

∂uα
+
∑

j

(−1)jDµ1
. . . Dµj

∂

∂uαµ1...µj

. (10)

In other words, the adjoint equations are found by re-
quiring the action A[f, f⋆] =

∫

f⋆αFαdx to be stationary
while computing the variation with respect to the fields f .

Ibragimov also discusses the generalized conserva-
tion theorem applicable to Lagrangians of arbitrary or-
der. For fields that satisfy the Euler-Lagrange equation,
δL/δuα = 0, the general theorem can be written as

Dµj
µ = X(L) + LDµ(ξ

µ), (11)

and, in case of second order Lagrangians, the flux jµ is

jµ = ξµL+Wα ∂L

∂uαµ
+Dν(W

α)
∂L

∂uαµν
−WαDν

(

∂L

∂uαµν

)

,

(12)
with Wα = ηα − ξσuασ .

Energy-momentum stress tensor – Before attend-
ing the Rosenbluth-Fokker-Planck system, explicit con-
servation laws for a second order Lagrangian are de-
rived. They are obtained by investigating phase-space-
time symmetries, and by generalizing the classic defini-
tion of the energy-momentum stress tensor.

Let us define an infinitesimal transformation with the
generating vector field X = Cµ∂/∂xµ where Cµ are con-
stants (constant phase-space-time translations). The flux
jµ defined in Eq. (12) then becomes jµ = CνT µν where
the generalized energy-momentum stress tensor, T µν , ap-
plicable to second order Lagrangians has the explicit form

T µν ≡ δµνL−uαν
∂L

∂uαµ
+uανDσ

(

∂L

∂uαµσ

)

−uανσ
∂L

∂uαµσ
. (13)

It is clear that if the Lagrangian is independent of second
order derivatives, our definition reduces to T µν = δµνL−
uαν ∂L/∂u

α
µ, i.e., to the standard energy-momentum stress

tensor for first order Lagrangians.
We then apply Eq. (11) to find CνDµT

µν = CνLν
where the derivative of the Lagrangian with respect to
coordinate xν is understood as an explicit derivative with
respect to the independent variables. Since the Cν are
arbitrary, the equation holds component-wise, and we
finally obtain

DµT
µν = Lν , ν = 0, . . . , n. (14)

It is then natural to consider the components of the
energy-momentum stress tensor separately, and to define
the energy density

E ≡ L − uαt
∂L

∂uαt
+ uαt Dσ

(

∂L

∂uαtσ

)

− uαtσ
∂L

∂uαtσ
, (15)

the energy-density flux

Si ≡ −uαt
∂L

∂uαi
+ uαt Dσ

(

∂L

∂uαiσ

)

− uαtσ
∂L

∂uαiσ
, (16)

the momentum density

P i = −uαi
∂L

∂uαt
+ uαi Dσ

(

∂L

∂uαtσ

)

− uαiσ
∂L

∂uαtσ
, (17)

and the stress tensor

Πij ≡ δijL − uαj
∂L

∂uαi
+ uαjDσ

(

∂L

∂uαiσ

)

− uαjσ
∂L

∂uαiσ
, (18)

in terms of which, we write equations for the energy and
momentum explicitly

DtE +DiS
i =Lt, (19)

DtP
j +DiΠ

ij =Lj . (20)
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It is clear that a conservation law exists for the energy
(momentum) related to the fields uα if the Lagrangian
does not explicitly depend on time (phase-space coordi-
nates).

Rosenbluth-Fokker-Planck system – Instead of the
integro-differential formulation by Landau, Rosenbluth
found a way to formulate the collisional evolution of the
distribution function in terms of a coupled system of par-
tial differential equations [13]. Here, for the sake of clar-
ity, we consider only the single species system, which
is normalized to dimensionless units. Including more
species is straight-forward. The phase-space coordinates
xi now denote the three Cartesian velocity coordinates.

The non-linear Rosenbluth-Fokker-Planck system for
the distribution function f and for the potentials φ and
ψ is then defined by the differential equations

Ff ≡ ∂tf −Di (Diφ f −DiDjψDjf) , (21)

Fφ ≡ DiDiφ− f, (22)

F
(1)
ψ ≡ DiDiψ − φ, (23)

F
(2)
ψ ≡ DiDiDjDjψ − f, (24)

where we have denoted two different options for the equa-
tion Fψ = 0. We then simply introduce the auxiliary
fields (f⋆, φ⋆, ψ⋆) and obtain the Lagrangians

L
(i)
RFP

= f⋆Ff + φ⋆Fφ + ψ⋆F
(i)
ψ . (25)

As such, L
(1)
RFP

contains derivatives of order three and

L
(2)
RFP

derivatives of order four. Addition of total deriva-
tives into the Lagrangian does not, however, alter the
Euler-Lagrange equations, and we may reduce the order
of derivatives present in the Lagrangians.

Neglecting total derivatives, we obtain the second-
order Lagrangians

L
(1)
RFP

=
1

2
f⋆ (Dt −DiφDi) f −

1

2
f (Dt −DiφDi) f

⋆

−
1

2
ff⋆DiDiφ−Dif

⋆DiDjψDjf

−Diφ
⋆Diφ−Diψ

⋆Diψ − φ⋆f − ψ⋆φ, (26)

L
(2)
RFP

=
1

2
f⋆ (Dt −DiφDi) f −

1

2
f (Dt −DiφDi) f

⋆

−
1

2
ff⋆DiDiφ−Dif

⋆DiDjψDjf

−Diφ
⋆Diφ+DiDiψ

⋆DjDjψ − φ⋆f − ψ⋆f,
(27)

and it is straight-forward to verify that both lead to the
Rosenbluth-Fokker-Planck system when varied with re-
spect to the fields (f⋆, φ⋆, ψ⋆).

Neither L
(1)
RFP

nor L
(2)
RFP

depends explicitly on time t
or velocity xi. It is thus possible to find exact conserva-
tion laws in the field-theory sense simply by computing

the energy density E , the energy-density flux Si, the mo-
mentum density P i, and the stress tensor Πij according
to their definitions given in equations (15–18).

Further, since the conservation laws are expressed in
divergence form and all our fields vanish at the bound-
aries of the infinite velocity space, we immediately obtain
conservation of the total field-related energy

Dt

∫

E dx1dx2dx3 = 0, (28)

and component-wise conservation of the total field-
related momentum

Dt

∫

P i dx1dx2dx3 = 0, i = 1, 2, 3, (29)

where the explicit expressions for the energy density and
momentum density are

E = L+
1

2
fDtf

⋆ −
1

2
f⋆Dtf, (30)

P i =
1

2
fDif

⋆ −
1

2
f⋆Dif. (31)

Although the definitions for energy and momentum
carried by the extended Rosenbluth-Fokker-Planck sys-
tem are not the physical kinetic energy and momentum
carried by the distribution function f , the exact conser-
vation laws in our extended continuous system motivate
finding variational integrators that would provide dis-
crete counterparts for the continuous conservation laws,
and thus solve the extended system as well as possible.
As the physical system can be derived from the extended
one, it is anticipated that the superior properties of vari-
ational integrators, though applied to the extended sys-
tem, would then carry to the physical system as well.

Adjoint system and Langevin equation – The ad-
joint equations for the fields (f⋆, φ⋆, ψ⋆) are derived by
applying the second order Euler-Lagrange operator

∂L

∂uα
−Dµ

(

∂L

∂uαµ

)

+DµDν

(

∂L

∂uαµν

)

≡ F ⋆α, (32)

with respect to the fields (f, φ, ψ). For the Lagrangian

L
(1)
RFP

one obtains

F
⋆,(1)
f ≡ −Dtf

⋆ + (Diφ)(Dif
⋆)

+Di (DiDjψDjf
⋆)− φ⋆, (33)

F
⋆,(1)
φ ≡DiDiφ

⋆ − ψ⋆ −Di (fDif
⋆) , (34)

F
⋆,(1)
ψ ≡DiDiψ

⋆ −DiDj (DifDjf
⋆) , (35)

and for the alternative LagrangianL
(2)
RFP

the computation
gives

F
⋆,(2)
f ≡ −Dtf

⋆ + (Diφ)(Dif
⋆)

+Di (DiDjψDjf
⋆)− φ⋆ − ψ⋆, (36)

F
⋆,(2)
φ ≡DiDiφ

⋆ −Di (fDif
⋆) , (37)

F
⋆,(2)
ψ ≡DiDiDjDjψ

⋆ −DiDj (DifDjf
⋆) . (38)
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Considering then the case of test-particles in a given
background plasma, the Rosenbluth potentials are pre-
defined and no longer dependent variables: the La-
grangian becomes simply LRFP = f⋆Ff . Noting that
DjDjψ = φ we define the coefficients

µi = −2Diφ (39)

1

2
σikσjk = −DiDjψ, (40)

and write the equations for f and f⋆ as

Ff = −Dtf −Di

(

µif
)

+DiDj

(

1

2
σikσjk f

)

, (41)

F ⋆f = Dtf
⋆ + µi (Dif

⋆) +
1

2
σikσjk (DiDjf

⋆) , (42)

which are the Kolmogorov forward (Ff = 0) and back-
ward (F ⋆f = 0) equations. The forward equation de-
scribes time evolution of the probability density of a
stochastic process X that obeys the Langevin equation
of the Itó type

dX i = µi(X)dt+ σij(X)dW j , (43)

where dW j is an infinitesimal change in a Wiener pro-
cess W j with expectation value E[W j] = 0 and variance
Var[W j ] = t. The backward equation, on the other hand,
describes the evolution of the probability density for t ≤ s
given end condition f⋆(x) = p(x).

Summary – In this letter, we have derived an Eule-
rian action principle for Coulomb collisions in plasmas
using the Rosenbluth potentials and the concept of ex-
tended Lagrangians. We also derived the exact conser-
vation laws for the total energy and momentum carried
by the fields in the extended system. In the case of a
test-particle population in a given background plasma,
the action principle was shown to equal the Langevin
equation for individual particles.

By providing an action principle for statistical descrip-
tion of Coulomb collisions, this letter, first of all, enables
for a comprehensive field theory in plasma physics. Sec-
ondly, as the action given is in a form suitable for dis-
cretization, the letter facilitates the development of vari-
ational integrators for the Fokker-Planck collision opera-
tor. Finally, derivation of exact conservation laws allows
variational algorithms to be benchmarked and validated.

The author is grateful for the encouraging comments
from T. Fülöp, J. Candy, I. Pusztai, A. Stahl, O. Embéus,
G. Papp, A. Bhattacharjee, T. Kurki-Suonio, S. Newton,
and A. Brizard and for all the fruitful discussions.
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