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The drift-wave (DW) kinetic equation, that is commonly used in studies of zonal flows (ZF),
excludes the exchange of enstrophy between DW and ZF and also effects beyond the geometrical-
optics limit. Using the quasilinear approximation of the generalized Hasegawa—Mima model, we
propose a modified theory that accounts for these effects within a wave kinetic equation (WKE)
of the Wigner-Moyal type, which is commonly known in quantum mechanics. In the geometrical-
optics limit, this theory features additional terms beyond the traditional WKE that ensure exact
conservation of the total enstrophy and energy in the DW-ZF system. Numerical simulations are

presented to illustrate the importance of these additional terms.

The proposed theory can be

viewed as a reformulation of the second-order cumulant expansion (also known as the CE2) in a
more intuitive manner, namely, in terms of canonical phase-space variables.

I. INTRODUCTION

The formation of zonal flows (ZF) is a problem of fun-
damental interest in many contexts, including physics of
planetary atmospheres, astrophysics, and fusion science
[1-7]. In particular, the interaction of ZF and drift-wave
(DW) turbulence in laboratory plasmas significantly af-
fects the transport of energy, momentum, and particles,
so understanding it is critical to improving plasma con-
finement. But modeling the underlying physics remains a
difficult problem. The workhorse approach to describing
the DW-ZF coupling, which is the wave kinetic equation
(WKE) [5, 8], is limited to the ray approximation and, in
fact, is oversimplified even as a geometrical-optics (GO)
model. That leads to missing essential physics, as was
recently pointed out in Ref. [9] and will be elaborated
below. These issues can be fixed by using the more ac-
curate quasilinear approach known as the second-order
cumulant expansion, or CE2 [10-14], whose applications
to DW-ZF physics were pursued in Refs. [15-17]. How-
ever, the CE2 is nowhere near as intuitive as the WKE,
and its robustness with respect to further approxima-
tions remains obscure. Having an approach as accurate
as the CE2 and as intuitive as the WKE would be more
advantageous.

Here, we propose such approach for a DW turbulence
model based on the generalized Hasegawa-Mima equa-
tion (gHME) (18, 19]. The idea is as follows. We start
by splitting the gHME into two coupled equations that
describe ZF and fluctuations, respectively, and then lin-
earize the equation for fluctuations, like in the CE2 ap-
proach. We notice then that this linearized equation is
similar to that for a quantum particle governed by a gen-
eralized (non-Hermitian) Hamiltonian. By drawing on
this analogy, we then formulate an ezact {modulo quasi-
linear approximation) kinetic equation for such particle,
which is akin to the so-called Wigner-Moyal equation in
quantum mechanics [20-22].

Compared to the CE2, the Wigner-Moyal formulation
is more intuitive, namely, for two reasons: (i) like the tra-

ditional WKE (tWKE), it permits viewing DW quanta
(“driftons”) as particles, except now driftons are guan-
tumlike particles, i.e., have nonzero wavelengths; and (ii)
the separation between Hamiltonian effects and dissipa-
tion remains transparent and unambiguous even beyond
the GO approximation. Compared to the tWKE, the
new approach is more precise, also for two reasons: (i) it
captures effects beyond the GO limit; and (ii) even in
the GO limit, it predicts corrections to the tWKE that
emerge from the newly found corrections to the drifton
dispersion. (In this aspect, our paper can be understood
as an expansion of the GO approximation introduced in
Ref. [9].) These corrections are essential as they allow
DW-ZF enstrophy exchange, which is not included in the
tWKE. By deriving the GO limit from first principles,
we eliminate this discrepancy and obtain a theory that
exactly conserves the total enstrophy (as opposed to the
DW enstrophy conservation predicted by the tWKE) and
the total energy, in precise agreement with the underly-
ing gHME. We also illustrate the substantial difference
between the GO limit of our theory and the t WKE using
numerical simulations.

The paper is organized as follows. In Sec. IT we in-
troduce the gHME and its quasilinear approximation. In
Sec. 11T we derive the Wigner—Moyal theory for DW and
ZF. In Sec. IV we rederive the dispersion relation for the
linear growth rate of ZF. In Sec. V we derive a corrected
WKE that, in contrast to the tWKE, conserves the total
enstrophy (and also energy). Numerical simulations are
presented to compare the new WKE with the tWKE. In
Sec. VI we summarize our main results. Some auxiliary
calculations are also presented in Appendices. This in-
cludes a brief introduction to the Weyl calculus that we
extensively use in our paper (Appendix A), a spectral
representation of our theory (Appendix B), and proofs of
the conservation properties of our models (Appendix C).



II. BASIC MODEL

Our theory is based on the gHME [18, 19],
dw+v-Vw+ B0 =Q, (1)

which is widely used to describe electrostatic two-
dimensional (2-D) turbulent flows both in a magnetized
plasma. with a density gradient and in an atmospheric
fluicl on a rotating planet, where the role of DW is played
by Rosshy waves [1, 17]. Both contexts will be described
on the same footing, so our results are applicable to DW
and Rosshy waves equally. We assume the usual geophys-
ical coordinate system, where x = (z,y) is a 2-D coordi-
nate, the z-axis is the ZF direction, and the y-axis is the
direction of the local gradient of the plasma density or of
the Coriolis parameter. (In the context of fusion plasmas,
a different choice of coordinates is usually preferred in lit-
erature, where  and y are swapped.) The constant £ is
a measure of this gradient. The function w(x,t) is the
generalized vorticity given by w = (V2 — L), where
& is an operator such that @ = 1 in parts of the spectrum
corresponding to DW and & = 0 in those corresponding
to ZF. (The symbol == denotes definitions.) Also, Lp is
the plasma sound radius or the deformation radius. (For
plasmas, one can take Lp = 1 in normalized units [18].
Also, the barotropic model used in geophysics is recov-
ered in the limit Lp — oo [10-13].) Also, 9(x,t) is the
electric potential or the stream function, v = e, x Vi is
the fluid velocity on the x plane, and e, is a unit vector
normal to this plane. The term ((x,t) describes external
forces and dissipation. Systems with @ = 0 will be called
isolated.

Let us decompose fields into their zonal-averaged and
fluctuating components, denoted with bars and tildes, re-
spectively. (For any g, its zonal averageis § = [dx g/L,,
where L, henceforth assumed equal to one, is the system
length along = axis.) In particular, w = 1w+, where the
two components of the generalized vorticity are related
to 1 as [15]

W= VZ’JM W= V%){/;) (2)
and V3 = V% — L2, Equations for @ and w are ob-
tained by taking the zonal-average and fluctuating parts
of Eq. (1). This gives

Ot +3 - Vo+v-Vi+B09+ far=Q,  (3a)
O +v-Vio = Q, (3b)
where 9,1 = 0 and fyr, =V - V@ — v - V is a nonlinear

term. Assuming fny, is negligible in Eq. (3a), Eqs. (3)
become

OU+V -V +V -Vi+B0,9 =0, (da)
oW+ v Vi = Q. (4b)

Equations (4) compose the well-known quasilinear model
(10]. In isolated systems, both sets of equations conserve

the enstrophy and the energy (strictly speaking, free en-
ergy) defined as

z i% /dzmwQ, E = —% /dgrcww- (5)

It is convenient to rewrite Eqs. (4) in terms of the
ZF velocity v = e,U, whose only component U(y,t) is
U = —d,). Specifically, one has v - Vi = — (O ) A2U),
v-Vu = U(’)ﬁﬁ, and v - Vi = ~f);f U Uy We~wﬂ] also
assume @ = £ — pqwi and @ = —pu 0. Here, € is some
external force with zero zonal average (eventually, we will
assume it to be a white noise), and the constant coeffi-
cients pqw and p,s are intended to emulate the dissipa-
tion of DW and ZF caused by the external environment.
Then, Eqs. (4) become

Byl + Uy + B — (O2U)) 059 = € — puawit,  (6a)
U + piatU + 8y Tp0, = 0. (6b)

Equations (6) are the same model as the one that un-
derlies the CE2. Although not exact, this model is useful
because it captures key aspects of ZF dynamics, such as
formation and merging of zonal jets [13, 17, 23]. Below,
we use it to derive a formulation of DW-ZF interactions
alternative to the CE2, namely, as follows.

III. WIGNER-MOYAL FORMULATION
A. State vector

Consider a family of all reversible linear transforma-
tions of 7i(x,t) of the form [d2z' K(x,x/,t)w(x',t).
These transformations map w(x,t) into some family of
image functions. Since these functions are mutually
equivalent up to an isomorphism, the resulting family can
be viewed as an single object, a time-dependent “state
vector” |w). (Analogous definitions will be assumed also
for |¥) and [€).) The original function w(x,t) is then
understood as a projection of |w), namely, as its “coor-
dinate representation” given by w(x,t) = (x|w). Here,
|x) are the eigenstates of the position operator % nor-
malized such that (x'|%|x) = x (x/|x) = x§(x' — x). This
definition of a field is similar to that used in quantum me-
chanics for describing probability amplitudes [24]. Hence,
it is convenient to describe the dynamics of |w) using a
quantumlike formalism. This is done as follows.

In addition to the coordinate operator X, let us intro-
duce a momentum (wave-vector) operator p such that,
in the coordinate representation, p = —iV. Accordingly,
|W) = —p3 |), where

b=p"+Lp> P*=p-p. (7)

ﬁQ
Hence, Eq. (6a) can be represented in the following form:

i, |W) = H |@) +1€). (8)



The operator H is given by
H = —Bpopp’ + Ups + U'pap® — ipiaw. (9)

Also, U = U(g,t), and the prime above U henceforth de-
notes dy; in particular, U" = 82 U(g,t).

B. Generalized von Neumann equation

Let us express Tig. (9) as H = H‘H + M 4, where
Iy = (H+HY/2 and Hy = (H— HY)/(2i) are the
Hermitian and anti-Hermitian parts of H, correspond-
ingly. Explicitly, these operators can be written as

Hy = 4%@52 +Upe + (0" pabp)1 /2, (100)
= [U", pudp’]- /(24) — fratw, (10b)
wheve  [-]= denotes the commutator given by

|4 1, ﬂ|_ = 4H BA, and [+/l+ denotes the anti-
contiutator given h', [A B]+ = 1B+H A. Let ns also
introduce a Hermitian operator W = 1) (@], which, by
analogy with quantum mechanics, is interpreted as the
“Auctuating-vorticity density” operator. It is seen from
Eq. (8) that W satisfies

iOW = [Hy, W]

where F' = |€) (] + |@) (€]. In particular, taking the
trace of this equation .|l=.n vaes an equalion for the “total
nutiber of DW quanta,” N = Tr W = [d%z (x]W|x) =
J P w? = (W), namely,

+ilHa, W]y +iF,  (11)

N =2Ty (H W) 4+ Tx F. (12)

This indicates that H A determines the loss of quanta,
or dissipation of DW. [In particular, the term gy in
Eq. {10Db) is responsible for DW dissipation to the exter-
nal environment, whereas the term [U”,ﬁTpDz] /(24) de-
stroys DW quanta while conserving the total enstrophy,
as will he discussed in Sec. IITE.] Also, Hg determines
conservative dynamics of DW and thus can be under-
stood as the drifton Hamiltonian. (The non-Hermitian
operator H will be attributed as the generalized Hamil-
tonian.) Notice that the distinction between dissipation
and Hamiltonian effects remains unambiguous even be-
yond the GO approximation.

Equation (11) can be understood as a generalized
von Neumann equation akin to the one that commonly
emerges in quantum mechanics. A standard approach to
such equation is to project it on the phase space using
the Weyl transform. (Readers who are not familiar with
the Weyl calculus are encouraged to read Appendix A
before continuing further.) Hence, we proceed as follows.

C. Wigner—Moyal equation

Let us introduce W as the Weyl symbol of W, ie.,

Wix,p,t) = /dzs e TP (x +8/2[Wx —s/2), (13)

which is real because W is Hermitian. In quantum me-
chanics, a similar construct is known as the Wigner func-
tion [25], so one can readily identify the physical meaning
of W. Specifically, in the regime when the ray approxima-
tion applies and dissipation is negligible, W/(27)? repre-
sents the phase-space probability density of driftons [the
numerical coefficient comes from Eq. (A4)], while beyond
the GO limit it can be considered as a generalization
of this probability density [26]. Using the fact that our
w(x,t) is real, one can also cast W as

W(x,p,t) = /(123 e iPS (x+ 2 t) w( ;,t) )

(14)

which also implies
W(x,p,t) = W(x,—p,1). (15)
One can interpret the right-hand side of Eq. (14) as the

local spatial spectrum of the correlation function of w.
Hence, W will be called the DW spectral function.

By applying the Weyl transform to Eq. (11), one gets
the following pseundodifferential equation:

OW = {Hpy, W} + [[Ha, W] + F. (16)

Here {{:,-}} and [[-,:]] are Moyal’'s “sine bracket”
(Eq. (A10)] and “cosine bracket” [Bq. (A12)]. The func-
tions Hy, Ha, and F are the Weyl symbols of Hy, H 4,
and F, respectively. In particular, using Eq. (A5) and
the fact that U is independent of z, one gets

Hy = _ﬁpm/pzD +Ups + [[U”apz/p%)]]/2, (17>
Ha={U",p:/Pb}}/2 — tidw, (18)

where p3 = p? + LBQ. By analogy with quantum me-
chanics, we call Eq. (16) a Wigner-Moyal equation.
Next, let us consider the zonal average of this equation,

OW = {({Hy, W} + [[Ha, W] + F, (19)

where W = W(y,p,t). We adopt the ergodic assump-
tion, namely, that the zonal average is equivalent to the
ensemble average [denoted ((...))] over realizations of the
random force £ {15]. To calculate F = ((F)), consider in-
tegrating Eq. (8) on a time interval (¢, ). The result can
be written as i) = |y, ) + |dw,) + f dt’ |€p) where
the indexes denote the Iilllt-": at which functions are eval-
uated, and |610;) = —i ff dt’ H |[iy). We will assuime

(EGx, EG, ) = 6(¢ — ) El(y +)/2,x = X)), (20)

where Z is some function [13, 17]. Since |§w;) can be

affected by |€4) only if # < ¢, one has €1€) (6wy]) = 0.
Hence,

F(y,p) = /d23 TP ((x +8/21€0) (tnlx — 5/2))) + c.c.

:/dQS E(y,s)cos(p - s), (21)



where c.c. denotes “complex conjugate.” In other words,
once the correlation function Z of §~ is specified, F' can
be readily calculated as the Fourier image of =.

This concludes the calculation of the functions that
determine the evolution of W through Eq. (19). How-
ever, these functions generally depend on U, so an ad-
ditional equation for U is needed to make the theory
self-consistent. This equation is derived as follows.

D. Equation for the zonal-flow velocity

Returning to Eq. (6b), we rewrite the nonlinear termm as

—(8y %) (8atp)

— (x| py 1) (9] pa |x)

= — (x[pyPp W ip Palx)

" d*p py Pa

=— o Wk =,
/ (2m)2 p?, Ph

5;1: 6y =

(22)

where we used Eq. (A3) in the last step. After introduc-
ing the averaged vorticity density W, Eq. (6b) becomes

8 d')p py

U + U = * W % 23
t Haf (’W} p ( )

Pr
3

Since W is independent of z and satisfies the condition
(15), Eq. (23) can also be written as

10, d%p 1
WU 4 j1,U = oy /(2 )2 pzpyW*p (24)

D

The combination of Eqs. (19) and (24) forms a closed set
of equations that can be used to calculate the dynamics
of W and U self-consistently.

E. Main equations and conservation laws

Let us slightly change the notation and summarize the
above equations in the following form:

aw = {{H, W}} +[[0, W]+ F —2uaW,  (25)
d2 1 L
KU + U = o / pzpyW* o (25b)

As a reminder, W(y, p,t) is the zonal-averaged spectral
(or Wigner) functlon that describes DW turbulence, and
Uy, t) is the ZF velocity. Also, F = F(y,p) is deter-
mined by the correlation function of the external noise
& (Sec. ITIC). We have also introduced H = Hpy and
T = Ha + 4w, or, explicitly,

(26a)
(26b)

H(y, p-t) = —Bpz/pb + U + [[U”, p2 /D)) /2,
T(y,p,t) = {{U",po/pD /2.

In Appendix B, we also present a spectral representa-
tion of these equations that can be used for a numerical
implementation of the Wigner—-Moyal formulation.

The function H can be understood as the Weyl symbol
of the drifton Hamiltonian, whereas I' determines dissi-
pation of DW quanta that is caused specifically by DW
interaction with ZF. This is explained as follows. Since
Eqgs. (25) are ezact within the quasilinear approximation
(modulo the ergodic assumption), they inherit the same
conservation laws as the original quasilinear model given
by Eqgs. (6). Specifically, for isolated systems (F = 0 and
tdw,zf = 0), Eqs. (25) and (26) exactly conserve the total
enstrophy and energy [Egs. (5)]

Z = Zgw + Za, £ =&+ Eat (27)

rather than their DW and ZF components. (A direct
proof is given in Appendix C1.) For completeness, we
present. expressions for these components:

Zaw = /d2u 1/‘12 dy W (28a)
dw — U (2 )2 y >
1
Zap = = 5 /dyw = E/dy (U"?, (28h)
~ 1 d?p w
I 2.5 — _ \
Eaw = / Pz @ / G (280)
Eup = —= /dyun,b = /dy U2, (28d)

where we used Eqs. (A4) and (A14) to derive the second
set of equalities. In particular, notice that, according to
Eqs. (28a) and (A4), the DW enstrophy Zg, and the
total number of DW quanta N = Tr W are the same up
to a constant factor.

The conservative equations (25) and (26), which we
attribute as the Wigner-Moyal formulation of DW-ZF
interactions, constitute the main result of our work. On
one hand, this formulation can be understood as an al-
ternative representation of the CE2 since it is derived
from the same quasilinear model. On the other hand,
the Wigner—Moyal formulation is arguably more intu-
itive than the CE2, namely, for two reasons: (i) Like
in the tWKE, driftons are treated as particles, except
now they are quantumlike particles, i.e., have nonzero
wavelengths; hence, one is not constrained to the GO
limit. (ii) Also, the separation between Hamiltonian ef-
fects and dissipation remains transparent and unambigu-
ous even heyond the GO approximation. The Wigner-
Moyal formulation also elucidates the link between the
WKE formalism and the CE2 and helps make approx-
imations rigorous by making them systematic. Below,
these and other applications are discussed in further de-
tail.

IV. GROWTH RATE OF ZONAL FLOWS

To demonstrate the convenience of the proposed the-
ory, let us apply it to rederive the rate of the zonostropic



0.056 0.05

Im ~

(@) k, =03 (b ky = 0.51

=] ®

- e

5 0 © &6 & @ @ g 0 ®

— —
e e

-0.05 J -0.05
-0.05 0 0.05 -0.05 0 0.05
Re v Re v

oy

0.05 : 0.05
(c) k, = 0.9 () ky =20
o ®
e &
0 o g 0 see
. —
(4]
® |
-0.05 I 0,05 |
-0.05 0 0.05 -0.05 0 0.05
Re v Re v

FIti. 1 Numerical solutions of the dispersion relation (34) for different ky with fixed k» =1, ¢ =0.1, 8 =1, Lp = 1, and
A7 = 1. The solutions shown in subfigures (a)-(d) correspond to k, = 0.3, k, = 0.5, ky = 0.9, and ky = 2.0, respectively. In
the interval 0.33 S |ky| < 0.82, the solutions v can be complex valued. [Similar regimes can also be observed in the barotropic
limit (Lp — o) using the same forcing and same fixed parameters.]

instability, i.e., the growth rate of weak ZF. Suppose
a homogeneons equilibrium with zero ZF velocity and
some DW spectral function #(p). [As pointed out in
Sec. IITC, the corresponding # (p)/(27)? represents the
phase-space prohability distribution of driftons.] Con-
sider small perturbations to this equilibriuim, namely,
U =6U(y,p,t), 6U =Re(U,etvt7),

W = #(p) + 6 (y,p,t), SW = Re [, (p)eav 7.

Here, the constant g serves as the modulation wave num-

ber, and the constant + is the instability rate to be found.
The linearization of Eq. (25a) leads to

(81 + 210w )W + {Bps /DB, 6W }}
= {p=U, 73} + {[[6U", p= /D3]] /2, 7 }}
+ “{{6U”7pm/pf?)}}/2a "//”, (29)

where we substituted Egs. (26). The brackets can be
calculated using Eqgs. (A17). Hence, we obtain

{1(7 + 2ptaw) + Boz (% - Tl—ﬂ W,
—-q

D,+¢ PD,

2
Dzq 1 1
+ — Da
2 <p2D,+q P%__q> ‘

Da 2 1
+’%(7ﬂ+q+w_q)< . —L> Uss (30)

2
Pp,4q Pb,—

= (Vg — W_q) Uq

where we assume the notation Ay, = A(p +e,q/2) for
any A. Solving for W, in terms of U, leads to

. 2 2
'f-i')m?"D.—i-r,u”D.—q

/ (')' + Zﬂdw)pf}_.f_q}“fj,—q + QZﬂQPmLDy
2 B
X (Wig {1 = | =W, [1- -1 U,.
PD,+q Py
Then, Eq. (25b) yields
o 0] d?p 1 P 1

Due to Eq. (A16), this can be simplified as follows:

. *p papy W
+ Uzt U, = iq a0 bl : (31)
(7 K ) q ] (271")~ JJ‘F!],-}—«;!}IH'.I. i ¢

After substituting the expression for Wq, one gets

d?p P3Py
7 + /sz = 2 2 2 B T
. (27]') (’Y + 2iu'dW)pD,+qu,—q + 27’;3(1p:rpy

0 ¢
X W_q 1-— 5 —7//+q 1*‘,—
?'}f.:.‘.- Ih pf.'.+r,-

As expected, this dispersion relation coincides with
that obtained using the CE2 formalism [17]. Notably,
the dependence of the integrand on %4, makes the ex-
pression similar to dispersion relations that emerge in
quantum mechanics; for instance, cf. Ref. (27, Sec. 40].

As a side note, it is commonly thought that ZF only
grow in situ, i.e., Rey > 0 with Im+y = 0. There have
been questions over whether it is possible to have unsta-
ble zonal modes at nonzero Im+y [28]. Here we show, by
presenting an example, that the answer is yes. Specifi-
cally, let us consider

(32)

W = (21)2 N [6(pe—ka )6 (Dy—ky) +0(pe+ky )5 (py+ky)
+ d(pz + km)‘s(py - ky) + 5(17.1‘ - kn:)‘s(py + ky)]/‘l (33)

and assume pgw, = 0 for simplicity. After integrating,
the dispersion relation (32) can be cast as tollows:

A2 q*
0 ol 1 — L3 1 - T 5
’Y[ ngnqk#} < k% )

Z ”{kll + n‘?fz)"l“'"[z_'a.-} En.quﬁ] -
X2 ""’i’%.+2m;/ki") + (Ry -+ ng/2)2/k2

X (34)

ne{—1,1}

where vy, = 28k, k, /kp is the DW group velocity in the
absence of zonal flows, and X = v/qug,.

Nunmerical solutions of Eq. (34) are presented in Fip. 1.
Although the solutions for v are real at simall enongh ky,
they become complex over some interval of k,. This is
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FIG. 2: The ZF velocity U(y,t) obtained by numerically integrating the WKE (41) for H and T of two types: (a) our model
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discontimious-Galerkin (DG) method [29] on a uniformly-spaced Cartesian grid with 80 x 24 x 48 cells, while Eq. (41b) was
discretized on a subset of this grid. Time advancement was done using an explicit third-order strong-stability-preserving Runge-
Kutta algorithm [30]. The solution was expanded locally in each cell as a sum of piecewise polynomials of degree one. At cell
interfaces, an upwind numerical flux was used in Eq. (41a) and a centered numerical flux was used in Eq. (41b). Higher-order
spatial derivatives such as U” and U™ were computed using the Recovery-based DG method [31]. For numerical stability, a
small amount of hyperviscosity [16] was added in the simulations.

transparent in the limit ¢ < k, in which Eq. (34) simpli-
fies to

0=X |1 8£ + 0(¢?) (35)
= 104 (X2 + 1)2 q),
where
Y 4k?
= = (1Y, 36
(07 H'”E.r_;}“'i"r ( k]% ( )

One may consider this as the GO limit of Eq. (34). Equa-
tion (35) predicts four nontrivial solutions for X, which
are given by X? = —1 + 4a + 4a(a — 1)]'/2. Different
regimes for the solutions can be deduced. When o > 1,
the solutions v are purely real. For the parameters in
Fig. 1, this regime corresponds to |k,| < 0.33. In the in-
terval 0 < o < 1 corresponding to 0.33 S |k, | < 0.82, v is
complex valued. In the interval —1/8 < @ < 0 which cor-
responds to 0.82 < |ky| < 1.07, the solutions are purely
imaginary. Finally, in the interval & < —1/8 correspond-
ing to |k,| 2 1.07, two solutions «y are purely imaginary,
and two other solutions are purely real. The different
regimes identified by solving Eq. (35) are consistent with
the observed numerical solutions of the exact dispersion
relation (34). In the next section, we will explore the GO
limit of the DW-ZF interactions in more detail.

V. GEOMETRICAL-OPTICS LIMIT AND THE
WAVE KINETIC EQUATION

Let us assume that the characteristic wavelengths for
zonal flows and drift waves are Ay and Mgy, respectively,
and

)\dw Lp
= < — 1.
€ = max ( o /\zf) < (37)

Hence, the following estimates will be adopted:
W A~ AW, W o Mgy W,
OyH M\ H, 8pH « LpH,

where H denotes both ‘H and I". (The latter estimate
is given for the marimum of O, H, which is realized at
p~ L5 [32].) This gives

O H "W <Adw

(38)

) HW SE“HW,  (39)

oy™ opy) Azf

n AT noo_ _
FHW (L—D HW <e&HW.  (40)
81); dy” p

Then, using the lowest-order approximations of the
Moyal products (Appendix A), Egs. (25) reduce to

OW = {H,W}+2TW + F — 2uq,W,

d d*p Py W
8 U + z U = - = e : _'J
e ayJ (2m)?* p

(41a)

) (41b)
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FIG. 3: The total, DW, and ZF enstrophies obtained by numerically integrating the WKE (41) for H and I" of two types: (a)
our model [Eqs. (42)]; (b) the tWKE model [Eqs. (43)]. The yellow lines show the total enstrophy that one would get due to

the external force F' at tdw,zf = 0. The initial conditions and simulation parameters are the same as in Fig. 2.

where {-, -} is the canonical Poisson bracket (A8), and

H >~ —Bpg /pd + poU + p U Jpd,
U~ {U",ps/p}}/2 = —pap U™ /Db

One may recognize Eq. (41a) as a variation of the WKE,
so we attribute Eqs. (41) and (42) as the WKE limit of
our general theory. Clearly, # acts as the drifton ray
Hamiltonian, while I" acts as the corresponding dissipa-
tion rate. [The factors of two in Eq. (41a) are due to the
fact that W is quadratic in the DW amplitude.] In other
wards, w(y, p,t) = H + il — iyqw can be viewed as the
local complex frequency of DW with given wave vector p.

Notice that our WKE differs from the tWKE, which
assumes a simpler dispersion of DW, namely,

H= *sz/plzj +p.U, I'=0. (43)

(42a)
(42Dh)

Although the difference is only in the high-order
derivatives of U, these terms remain important for var-
ious reasons. For example, in the Hamiltonian #, U”
can be comparable to § (as is sometimes the case in
geophysics [2]). Also, consider the following. In iso-
lated systems, the tWKE is oW = {H,VT/}, 0 it con-
serves DW quanta, or, in other words, the DW enstrophy
Ziw [Eq. (28a)]. At the same time, the ZF enstrophy
Zyp [Eq. (28h)] generally evolves, so the tatal enstrophy
Z = Z4w + Z, does too. This is in contradiction with
the gHME, which conserves Z, and can lead to overes-
timating the ZF velocity and shear generated by DW
turbulence [33]. In contrast to the tWKE, our theory is
free from such issues, because Eqs. (41) and (42) exactly
conserve both Z and £ (Appendix C2). Note that, in
order fo retain this conservation property, it is necessary
to keep both U” and U" in Eqs. (42). In this sense,
Egs. (41) and (42) represent the simplest GO model that

18 physically meaningful in the nonlinear regime. This is
in agreement with Ref. [9], where a similar conclusion was
made based on comparing the linear zonostrophic insta-
bility rate predicted by the CE2. {As a note on terminol-
ogy, Ref. [9] refers to the tWKE [Eqgs. (41) and (43)] as
the Asymptotic WKE, i.e., the limit obtained when one
assumes the ZFs are asymptotically large scale. Also,
Ref. [9] refers to Eqs. (41) and (42) as CE2-GO.)

The numerical results presented in Figs. 2-4 illustrate
the importance of the difference between our WKE and
the tWKE [subfigures (a) and (b), respectively]. As seen
in Fig. 2, while our WKE model predicts ZF with a pax-
ticular A, the scale of ZF predicted by tWKE is deter-
mined by nothing but the grid size that is used in simu-
lations. This is because the tWKE predicts that the rate
of the zonostrophic instability v (Sec. IV) scales linearly
with the ZF wave number ¢, so ZF are produced at the
largest ¢ that is allowed [9)].

Consider also the enstrophy plots in Fig. 3. To aid
our discussion, we added plots of the enstrophy Z.y
that the external forcing F' injects into the DW-ZF sys-
tem, namely, Zey = (¢£/2)(27)72 [dyd?p F'. Within our
model, the total enstrophy Z remains always smaller
than Z.., which is natural, since the simulation is done
for piawzs > 0. In contrast, the tWKE model predicts
that Z can surpass Zex, which is unphysical. In addition,
the values of the ZF and total enstrophies predicted by
the tWKE are several times larger than those predicted
by our model.

For the sake of completeness, Fig. 4 also presents the
corresponding energies and the energy &, introduced by
the external force, Ene = (£/2)(2) 2 [dyd®p F/pd. In
both cases, £(f) < £,.:(¢), which is in agreement with
the fact that both models conserve the total energy of
an isolated system. Still, the tWKE predicts very differ-
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FIG. 4: The total, DW, and ZF energies obtained by numerically integrating the WKE (41) for H and I" of two types: (a)
our model [Fqs. (42)]; (b) the tWKE model [Egs. (43)]. The yellow lines show the total energy that one would get due to the

external force F' ab pdw,.s = 0. The initial conditions and simulation parameters are the same as in Fig. 2.

ent results quantitatively, even though the tWKE model
{Eqs. (43)] is seemingly close to ours [Egs. (42)].

VI. CONCLUSIONS

The goal of this paper was to propose a theory of
DW-ZF interactions that would be more accurate than
the tWKE and, simultaneously, more intuitive than the
CE2. We adopted the same model [Eqgs. (6)] that was
previously applied to derive the CE2. Then, we manipu-
lated it using the Weyl calculus to produce a phase-space
formulation of DW-ZF interactions. The resulting the-
ory [Eqs. (25) and (26)] is akin to a quantum kinetic
theory and involves a pseudodifferential Wigner-Moyal
equation. To facilitate its numerical implementation in
the future, we also presented an integral representation
of our main equations (Appendix B).

On one hand, this Wigner—Moyal formulation can be
understood as an alternative representation to the CE2
since both models use the same assumptions. For exam-
ple, we show that it leads to the same linear growth rate
of weak ZF as that obtained from the CE2 (Sec. TV).
On the other hand, the Wigner—-Moyal formulation is ar-
guably more intuitive than the CE2, namely, for two rea-
sons: (i) it permits treating driftons as particles (i.e., as
objects traveling in phase space), except now they are
quantumlike particles with nonzero wavelengths; and (ii)
the separation between Hamiltonian effects and dissipa-
tion remains unambiguous even beyond the GO limit.

Compared to the tWKE, the new approach is more pre-
cise, also for two reasons: (i) it captures effects beyond
the GO limit; and (ii) even in the GO limit, it predicts
corrections to the tWKE that emerge from the newly
found corrections to the drifton dispersion (Sec. V).

These corrections are essential as they allow DW-ZF en-
strophy exchange, which is not included in the tWKE. By
deriving the GO limit from first principles, we eliminated
this discrepancy and arrived at a theory that exactly con-
serves the total enstrophy (as opposed to the DW en-
strophy conservation predicted by the tWKE) and the
total energy, in agreement with the underlying gHME.
We also illustrated the substantial difference between the
GO limit of our theory and the tWKE using numerical
simulations.

This work can be expanded at least in two directions.
First, the difference between the Wigner-Moyal formula-
tion and the newly proposed WKE can be assessed quan-
titatively using numerical simulations. Second, the ana-
lytic methods we proposed here can be extended to other
turbulence models, such as in Refs. (34, 35]. The an-
ticipated benefit is that more accurate equations would
be derived that would respect fundamental conservation
laws that existing theories may be missing otherwise.

The authors thank J. A. Krommes for valuable dis-
cussions. This work was supported by the U.S. DOE
through Contract Nos. DE-AC02-09CH11466 and DE-
AC52-07TNA27344, by the NNSA SSAA Program through
DOE Research Grant No. DE-NA(0002948, and by the
U.S. DOD NDSEG Fellowship through Contract No. 32-
CFR-168a.

Appendix A: Weyl calculus

This appendix summarizes our conventions for the
Weyl transform. (For more information, see the excel-
lent reviews in Refs. [36-39].) The n-dimensional Weyl



symbol A(x, p) of any given operator A is defined as
A(x,p) = /d"s TP (x +5/2lAlx —s/2). (A1)

We shall refer to this description of the operators as a
phase-space representation, since Weyl symbols are func-
tions of the 2n-dimensional ray phase space (x, p). Con-
versely, the inverse Weyl transformation is

N 1 .
— n n, an_ ,—ip-s
A —_(27r)" /d zd"pd"se

x A(x,p) [x —8/2) (x +3/2]. (A2)

In particular, notice that, for any operator A, its ma-

trix elements in the coordinate representation, A(x, x’) =
(x| A|x"), can be expressed as

1 st - x/
L4(X, x/) _ W /dnpe—zp.(x —x)A <X -lzx ,p) !

so A(x,p) can be understood as a spectrum of A(x,x').
In particular,

dmp
(gﬂ-}n

A(x, %) =

A(x,p). (A3)

Other properties of the Weyl transform that we use in
this paper are as follows:

e For any operator A, its trace can be expressed as

1

TrA = 0 / d"z d"p A(x, p). (A4)

o If A(x, p) is the Weyl symbol of A, then A”(x, p) is the
Weyl symbol of AT, As a corollary, the Weyl symbol of
a Hermitian operator is real.

e For any ¢ = AB, the corresponding Weyl symbols
satisfy [20, 21]

C(x,p) = A(x, p) * B(x,p). (A5)
Here, % is the Moyal product, which is given by
A(x,p) * B(x,p) = A(x,p)e"*/*B(x,p),  (A6)
and £ is the Janus operator, which is given by
L=be By-b, ai=1{"") (A7)

The arrows indicate the directions in which the deriva-
tives act, and ALB = {A, B} is the canonical Poisson
bracket, namely,

{4, B} = (6xA) - (8pB) — (9pA) - (0« B). (A8)
s The Moyal product is associative, i.c.,
A*BxC=(AxB)*C =A% (BxC). (A9)

e The anti-symmetrized Moyal product defines the so-
called Moyal bracket

{A,BY} = —i (A+x B — B« A) =24sin(£/2)B. (A10)

Because of the latter equality, this bracket is also called
the sine bracket. In the ray approximation,

{{A,B}} ~ {4, B}. (A11)
e The symmetrized Moyal product is defined as
[[A,B]] = A+*B+BxA=2Acos(L/2)B.  (Al2)

Because of the latter equality, this bracket is also called
the cosine bracket. In the ray approximation,

[[A, B]] ~ 24B. (A13)

e Assuming that fields vanish at infinity rapidly enough,
the phase-space integral of the Moyal product of two
symbols equals the integral of the regular product of
these symbols; i.e.,

/d”m d"p A%« B = / d"zd"p AB. (Al4)
As a corollary,
/d"m d"p{A,B}} =0, (Al5a)
/d"md"p[[A, Bl = 2/d"‘a:d"pAB. (A15D)
e For constant k, one has
: o ,
A(p) » e0* = A(p)eap'(qﬂ)e%q x
—Alp+a/2eT (AL6)

e As a corollary, one has

{{A(p), "™}
a4l e aa
[A(p), e'*™]]

_ ! _ ﬂ)} iq-x
—[A(p+2)+A<p 5 ) et (AL7D)
o For constant k and g, one can also show that
A(p)e"’k'x * B(p)e'd™
= A(p +q/2)B(p — k/2)e"* V> (A18)



Appendix B: Spectral representation of the
Wigner—Moyal formulation

To facilitate numerical implementations of our theory
in the future, we propose an integral form of Egs. (25)
using a spectral representation. (Numerical simulations
of the CE2 theory are presented in Refs. [10-14].) The
assumed notation for the Fourier representation of any

A(y, p,t) will be
/ Ag(p,t)e.

We start by rewriting Eqs. (A17) as

1: d i r“! P, —
[;f; +/ﬁ (pme‘”l = %Ilf’“,pmf”) v
2 2

Ay, p,t) (B1)

H=—

= p(p + e,q/2). This leads to

2
1 1
1-5 | o—+5
2 \Pb—q  PD,q

where pf, | 0

..
H, = 2mb(q) =2 4 p,

"

u,.

(B2)

Similarly,

-]

y&

q2 i 2
5 He ™, papp® B Uy

dg ¢ [ ps Dz
—— | U,, (B3
/27r 2 (pQD,—q p2D,+q » (59

so one obtains

7 1 1
Py=c—=5—- P=q U (B4)
T2 (pl%.—q pD +q>
Also, using Eq. (A18), we obtain
{H.wy
drds DZTERTY isy
=] @2 {Hr(p, )™, Ws(p, )" }}
drds 1 —
o - i(r+s)
- / (27)2 4 (HT’+SWS'_T HT’_SWS +r) Y

d { ps ]
- ﬁ€T + / _q Dy — f_f_ .:;”_ e I I,rqprf;;\:.
pD 27 2 pr},—q ?"D +q

10

where A, 1, = Ar(p £ eys/2,t) for any A.(p,t). Also,
(T, W]

drds
- [ Gy ete

drds = = B .
= | 2n)2 i{r+s)
_/(gﬂp (I‘T‘\+sws,—r+ry‘1_sws‘+r> e v

P, )e’™, W, (p, t)e'*Y]]

By inserting these into Eq. (25a), we obtain

Btwq = F‘q - 2Ndeq
dr . —
+ by [(Trg-r — iHrqr) Wo—r,—
+ (Fr,+r—q + iHr,+r—q) Wq—r,r]~ (B5)

Also, using that

a d*p 1 1
o * PepyW * =
ay ) em?pd YT TP}
5, d*pdg 1 1
=— | a7 =5 *PaD W L
dy ) (2m)* py v P}
_ 0 diwdr? PPy G giay
8y J (@n) i qPb.—y

i [ d*pdg 1 P —
= - 5 — =5 p Weqy, B6
Ik (wu_,, g Lt

one gets the following representation of Eq. (25b):

) d%p 1 1 —
OUq + poUy = / L 5 - = PaWy.
27—) J”l)‘—r; p|—1.+r;

Equations (B2), (B4), (B5), and (B7) constitute the spec-
tral representation of our Wigner—Moyal formulation.

Appendix C: Conservation of the total enstrophy and energy

Here, we prove the conservation of the total enstrophy Z and the total energy £ for isolated systems (Q =

the Wigner-Moyal model and the WKE model.

0) for
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1. Wigner—Moyal model

First, consider the Wigner-Moyal model [Egs. (25) and (26)]. For the enstrophy, we obtain

dZ 1 d*p —

=5 et [20 (S wmum ¥« 5 ) 40 W)+ (07

1 [ d? 1 — 1 —
=5/ [0 (G o) 420 ] (C”
D D

where we used Egs. (A15). To evaluate the remaining terms, we use the Fourier representations of W (y, p,t) and
U(y,t) as defined via Egs. (B1). Specifically, after substituting Eq. (26b) for I', we obtain

dZz 1 d?p dq dk — s 1 ey . L v 205 iqy s ‘ky]
=2/ - L UWy |— — WYy | ety — ¢ LA C2
=~ / T 2 3 dy U, Wy [ 2iq 2z * Drpye *P2D e q“{e'", pepp” e (C2)

The Moyal products and the brackets can be evaluated using Egs. (A16) and (A17). Using the notation Ay, =
A(p + eyq/2) for any A(p), one then obtains

d2 _ 1 [ d% dqdk W 2paput” pag? [ e / dy eitk+0
dt  20) (2m)? 27 27 77 PhoPh PD~q  Pbg
i d%p d — 1 1
= —z/ =3 2—q dk U,Wipepyq® g —— 7 d(k+q)
(—W} m Do oPo —k P 4P, —q
—0. (C3)

For the energy, one has

e L[ d*% . aWw
E-/dyU(&U)%-Z Wdy?;

1 d?p 0 /1 _ 1 1 _ 1 _
=5 G [ 55 (g * o )+ St ) 4 (0
D p Pp D

5| [@n)? By
1 d?p 1 — 1 1 " _ — 1 " _ —
=53] @2 dy [2U (1% * PepyW % %> 3z {{sz + [[U", papi?]] /2,W}} - %[[{{U \PaPp 12, W]

(C4)

Here, we used the fact that the Taylor expansion of Eq. (A10) for the Moyal bracket {wW, Bps /3 Y} /Py consists of
total derivatives on y, so its integral over y is zero. The other terms can be expressed as follows. First of all,

d?p [ ( 1 — 1 1
dy [2U' | = xp, W*—)—-— U W ]
/ (2m)2 Y pzD DDy plz:) pzD {{p }}

1?p dq dk — /1 U B N 1 oy
= / £ 2.2 dy U, [2quk <—2 *pmpye”‘y * —2) e — —{{p;e'?, Wk}}elky]
p pPp o

(2m)2 27 27 S

2; d _ D, 5 _ _ .
@p_dg dk U, [iWk byl PE (ch,—q _Wk,+q):| /dy etktay

(27)2 om 21 ¢ l’-’f),.H.-VQU_—k i,

d?p dg — 200 000 1 1
= | —% — dkiUWi | 5———— 4 pz | —— — o(k+4q)
/ (2m)% 27 0T P D Phag  Pb—q (
o (C5)
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Also, using Eq. (A18), we obtain

[ o v g (0" ol + 10" o071 71

2
[ s o o 0 e (U e Wi + (e e W)

d?p dq dk U, pag? _ _ oy T i R - iqy 117 ik
o / (2m)? 27 o o W éf‘ ({{(pD?+q +pD.2—q)e ¥, Wye ky}} - Z[[(pD.2+q - pD?—q)e " Wie ky”)

_/ dp dq dkd qu’;rq ﬁ‘}k,q . f'?k..—q I’T“k.q N 1/T/k,—q
) @m)?2r o 2ipd,

2 2 2 2
PDotg—k  PDwgik  Ph—g—t  PD,—g+k
Wia , Wieg = Wig Wiy >ei(k+q)y

+ 2 .JZ 2 )E.
PD4g-k  Phsqer PD—g—k  PH—qik
/ dp Y kU, < ! : )6(k+ )
= 1 kDPzq - q
(2m)? 27 : B—aPD—k  PD+aPD +k
0. (C6)

By substituting Eqs. (C5) and (C6) into Eq. (C4), one obtains £ = 0.

2. WKE model

Now let us consider the WKE model [Eqgs. (41) and (42)]. For the enstrophy, we obtain

Z 1 d?
4z _ / dy (3,U)(8,0:U) + = / Py o,
t 2/ (2m)?
1 d*p 2DeDy gy 77 -7
= — . w 2w
5 / e dy ( " U +{H,W}+
1 d?p 2pap —
- w [ 2PePu gy op
2/{%}2"”( T )W
—0, (c7)

where we used the fact that the phase-space integral of the Poisson bracket is zero and also substituted Eq. (42b).
For the energy, we obtain

%% - /dy U(a.U) +l AP 4, O0W

(2m)2 7 pj
1 / d?p 1 (Zp_,.p” >
=—< | s dv—= UW — {H{,W}—2I'W
2 (27r)2 pD b { }
1 / d’p 1 <~pm= Capn 5\, 2Pl
o, __ d . ) UIW me + - UII W + H' .rUIIIW C8
2/ (2m)? yp2D " { PsPp } Ph (C8)

where we used that the integral of {W, 8p /p%}/p% over y is zero because this term can be written as a total derivative
on y. Finally,

dé 1 / d*p 1 (27:”0, — — 271711, Zprp,
—_—= = dy—= ZYU'W —p U, W — U"'(? W+ ’U”a W+ 2228 gy
a2 R\ v Py & P ph

_ »1/ “-12?’” dy% (zf’zp;{.‘ U'W — 2P P?;U W ‘IPJ‘T’!; UMW — -T’r?’u U 4 PPy 21”rf’u U///W)
(27)* “pp \ Pp b b b P
0. (C9)
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